BAIT

VMA2

VAT2, H(+)-transporting V1 sector ATPase subunit B, ATPSV, L000002458, YBR127C
Subunit B of V1 peripheral membrane domain of vacuolar H+-ATPase; an electrogenic proton pump found throughout the endomembrane system; contains nucleotide binding sites; also detected in the cytoplasm; protein abundance increases in response to DNA replication stress
Saccharomyces cerevisiae (S288c)
PREY

GSH1

glutamate--cysteine ligase, L000000735, YJL101C
Gamma glutamylcysteine synthetase; catalyzes the first step in glutathione (GSH) biosynthesis; expression induced by oxidants, cadmium, and mercury; protein abundance increases in response to DNA replication stress
GO Process (3)
GO Function (1)
GO Component (2)

Gene Ontology Molecular Function

Gene Ontology Cellular Component

Saccharomyces cerevisiae (S288c)

Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Publication

Loss of vacuolar proton-translocating ATPase activity in yeast results in chronic oxidative stress.

Milgrom E, Diab H, Middleton F, Kane PM

Yeast mutants lacking vacuolar proton-translocating ATPase (V-ATPase) subunits (vma mutants) were sensitive to several different oxidants in a recent genomic screen (Thorpe, G. W., Fong, C. S., Alic, N., Higgins, V. J., and Dawes, I. W. (2004) Proc. Natl. Acad. Sci. U. S. A. 101, 6564-6569). We confirmed that mutants lacking a V(1) subunit (vma2Delta), V(o) subunit, or either of ... [more]

J. Biol. Chem. Mar. 09, 2007; 282(10);7125-36 [Pubmed: 17215245]

Throughput

  • Low Throughput

Ontology Terms

  • phenotype: inviable (APO:0000112)

Curated By

  • BioGRID