BAIT
VMA2
VAT2, H(+)-transporting V1 sector ATPase subunit B, ATPSV, L000002458, YBR127C
Subunit B of V1 peripheral membrane domain of vacuolar H+-ATPase; an electrogenic proton pump found throughout the endomembrane system; contains nucleotide binding sites; also detected in the cytoplasm; protein abundance increases in response to DNA replication stress
GO Process (4)
GO Function (1)
GO Component (4)
Gene Ontology Biological Process
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Saccharomyces cerevisiae (S288c)
PREY
GSH1
glutamate--cysteine ligase, L000000735, YJL101C
Gamma glutamylcysteine synthetase; catalyzes the first step in glutathione (GSH) biosynthesis; expression induced by oxidants, cadmium, and mercury; protein abundance increases in response to DNA replication stress
GO Process (3)
GO Function (1)
GO Component (2)
Gene Ontology Biological Process
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Saccharomyces cerevisiae (S288c)
Synthetic Lethality
A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.
Publication
Loss of vacuolar proton-translocating ATPase activity in yeast results in chronic oxidative stress.
Yeast mutants lacking vacuolar proton-translocating ATPase (V-ATPase) subunits (vma mutants) were sensitive to several different oxidants in a recent genomic screen (Thorpe, G. W., Fong, C. S., Alic, N., Higgins, V. J., and Dawes, I. W. (2004) Proc. Natl. Acad. Sci. U. S. A. 101, 6564-6569). We confirmed that mutants lacking a V(1) subunit (vma2Delta), V(o) subunit, or either of ... [more]
J. Biol. Chem. Mar. 09, 2007; 282(10);7125-36 [Pubmed: 17215245]
Throughput
- Low Throughput
Ontology Terms
- phenotype: inviable (APO:0000112)
Curated By
- BioGRID