BAIT

RLF2

CAC1, L000003990, YPR018W
Largest subunit (p90) of the Chromatin Assembly Complex (CAF-1); chromatin assembly by CAF-1 is important for multiple processes including silencing at telomeres, mating type loci, and rDNA; maintenance of kinetochore structure; deactivation of the DNA damage checkpoint after DNA repair; chromatin dynamics during transcription; and repression of divergent noncoding transcription
GO Process (1)
GO Function (1)
GO Component (3)

Gene Ontology Biological Process

Gene Ontology Molecular Function

Gene Ontology Cellular Component

Saccharomyces cerevisiae (S288c)
PREY

RTT106

YNL206C
Histone chaperone; involved in regulation of chromatin structure in both transcribed and silenced chromosomal regions; affects transcriptional elongation; has a role in regulation of Ty1 transposition; interacts physically and functionally with Chromatin Assembly Factor-1 (CAF-1)
Saccharomyces cerevisiae (S288c)

Phenotypic Enhancement

A genetic interaction is inferred when mutation or overexpression of one gene results in enhancement of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene.

Publication

Pivotal roles of PCNA loading and unloading in heterochromatin function.

Janke R, King GA, Kupiec M, Rine J

InSaccharomyces cerevisiae, heterochromatin structures required for transcriptional silencing of theHMLandHMRloci are duplicated in coordination with passing DNA replication forks. Despite major reorganization of chromatin structure, the heterochromatic, transcriptionally silent states ofHMLandHMRare successfully maintained throughout S-phase. Mutations of specific components of the replisome diminish the capacity to maintain silencing ofHMLandHMRthrough replication. Similarly, mutations in histone chaperones involved in replication-coupled nucleosome assembly ... [more]

Proc. Natl. Acad. Sci. U.S.A. Feb. 27, 2018; 115(9);E2030-E2039 [Pubmed: 29440488]

Throughput

  • Low Throughput

Ontology Terms

  • phenotype: silencing (APO:0000046)

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
RTT106 RLF2
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.2986BioGRID
2171559
RLF2 RTT106
Phenotypic Enhancement
Phenotypic Enhancement

A genetic interaction is inferred when mutation or overexpression of one gene results in enhancement of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene.

Low-BioGRID
3014335
RLF2 RTT106
Phenotypic Enhancement
Phenotypic Enhancement

A genetic interaction is inferred when mutation or overexpression of one gene results in enhancement of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene.

Low-BioGRID
637564
RTT106 RLF2
Phenotypic Enhancement
Phenotypic Enhancement

A genetic interaction is inferred when mutation or overexpression of one gene results in enhancement of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene.

Low-BioGRID
3557592
RTT106 RLF2
Phenotypic Enhancement
Phenotypic Enhancement

A genetic interaction is inferred when mutation or overexpression of one gene results in enhancement of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene.

Low-BioGRID
632089
RLF2 RTT106
Phenotypic Enhancement
Phenotypic Enhancement

A genetic interaction is inferred when mutation or overexpression of one gene results in enhancement of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene.

Low-BioGRID
3025886
RTT106 RLF2
Phenotypic Suppression
Phenotypic Suppression

A genetic interaction is inferred when mutation or over expression of one gene results in suppression of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene.

Low-BioGRID
2388483
RTT106 RLF2
Reconstituted Complex
Reconstituted Complex

An interaction is detected between purified proteins in vitro.

Low-BioGRID
-
RTT106 RLF2
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Low-BioGRID
682663
RTT106 RLF2
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Low-BioGRID
1240380
RLF2 RTT106
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Low-BioGRID
332615
RTT106 RLF2
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Low-BioGRID
353731
RTT106 RLF2
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Low-BioGRID
644742
RTT106 RLF2
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

High-BioGRID
330126

Curated By

  • BioGRID