BAIT

DED1

SPP81, DEAD-box ATP-dependent RNA helicase DED1, L000000500, YOR204W
ATP-dependent DEAD (Asp-Glu-Ala-Asp)-box RNA helicase; required for translation initiation of all yeast mRNAs; binds to mRNA cap-associated factors, and binding stimulates Ded1p RNA-dependent ATPase activity; mutation in human homolog DBY is associated with male infertility; human homolog DDX3X complements ded1 null mutation; DED1 has a paralog, DBP1, that arose from the whole genome duplication
GO Process (2)
GO Function (3)
GO Component (2)

Gene Ontology Cellular Component

Saccharomyces cerevisiae (S288c)
PREY

TIF2

translation initiation factor eIF4A, eIF4A, L000002303, YJL138C
Translation initiation factor eIF4A; DEA(D/H)-box RNA helicase that couples ATPase activity to RNA binding and unwinding; forms a dumbbell structure of two compact domains connected by a linker; interacts with eIF4G; protein abundance increases in response to DNA replication stress; TIF2 has a paralog, TIF1, that arose from the whole genome duplication
GO Process (2)
GO Function (2)
GO Component (4)
Saccharomyces cerevisiae (S288c)

Reconstituted Complex

An interaction is detected between purified proteins in vitro.

Publication

Coupling between the DEAD-box RNA helicases Ded1p and eIF4A.

Gao Z, Putnam AA, Bowers HA, Guenther UP, Ye X, Kindsfather A, Hilliker AK, Jankowsky E

Eukaryotic translation initiation involves two conserved DEAD-box RNA helicases, eIF4A and Ded1p. Here we show that S. cerevisiae eIF4A and Ded1p directly interact with each other and simultaneously with the scaffolding protein eIF4G. We delineate a comprehensive thermodynamic framework for the interactions between Ded1p, eIF4A, eIF4G, RNA and ATP, which indicates that eIF4A, with and without eIF4G, acts as a ... [more]

Elife Dec. 05, 2015; 5(); [Pubmed: 27494274]

Throughput

  • Low Throughput

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
DED1 TIF2
Dosage Rescue
Dosage Rescue

A genetic interaction is inferred when over expression or increased dosage of one gene rescues the lethality or growth defect of a strain that is mutated or deleted for another gene.

Low-BioGRID
2388694
DED1 TIF2
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-BioGRID
3493697
TIF2 DED1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.2194BioGRID
2051390
DED1 TIF2
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.5596BioGRID
2017423

Curated By

  • BioGRID