BAIT

SGF73

SCA7, YGL066W
SAGA complex subunit; has a role in anchoring the deubiquitination module into SAGA and SLIK complexes; involved in preinitiation complex assembly at promoters; relocalizes to the cytosol in response to hypoxia; human ortholog ataxin-7 is associated with spinocerebellar ataxia diseases; mutant displays reduced transcription elongation in the G-less-based run-on (GLRO) assay
Saccharomyces cerevisiae (S288c)
PREY

SAC3

LEP1, L000001792, YDR159W
mRNA export factor; required for biogenesis of the small ribosomal subunit; component of TREX-2 complex (Sac3p-Thp1p-Sus1p-Cdc31p) involved in transcription elongation and mRNA export from the nucleus; involved in post-transcriptional tethering of active genes to the nuclear periphery and to non-nascent mRNP; similar to the human germinal center-associated nuclear protein (GANP)
Saccharomyces cerevisiae (S288c)

Phenotypic Suppression

A genetic interaction is inferred when mutation or over expression of one gene results in suppression of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene.

Publication

The SAGA histone deubiquitinase module controls yeast replicative lifespan via Sir2 interaction.

McCormick MA, Mason AG, Guyenet SJ, Dang W, Garza RM, Ting MK, Moller RM, Berger SL, Kaeberlein M, Pillus L, La Spada AR, Kennedy BK

We have analyzed the yeast replicative lifespan of a large number of open reading frame (ORF) deletions. Here, we report that strains lacking genes SGF73, SGF11, and UBP8 encoding SAGA/SLIK complex histone deubiquitinase module (DUBm) components are exceptionally long lived. Strains lacking other SAGA/SALSA components, including the acetyltransferase encoded by GCN5, are not long lived; however, these genes are required ... [more]

Cell Rep Jul. 24, 2014; 8(2);477-86 [Pubmed: 25043177]

Throughput

  • Low Throughput

Ontology Terms

  • phenotype: replicative lifespan (APO:0000317)

Additional Notes

  • Figure 2

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
SGF73 SAC3
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-3.3092BioGRID
221429
SAC3 SGF73
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.1604BioGRID
2096514
SGF73 SAC3
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.2114BioGRID
2114986
SGF73 SAC3
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-7.3435BioGRID
510602
SGF73 SAC3
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Low-BioGRID
297338

Curated By

  • BioGRID