BAIT
HNRNPL
HNRPL, hnRNP-L, P/OKcl.14
heterogeneous nuclear ribonucleoprotein L
GO Process (4)
GO Function (4)
GO Component (5)
Gene Ontology Biological Process
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Homo sapiens
PREY
PRKCZ
PKC-ZETA, PKC2, RP11-181G12.1
protein kinase C, zeta
GO Process (21)
GO Function (4)
GO Component (6)
Gene Ontology Biological Process
- blood coagulation [TAS]
- establishment of cell polarity [ISS]
- long-term synaptic potentiation [ISS]
- negative regulation of insulin receptor signaling pathway [IMP]
- negative regulation of peptidyl-tyrosine phosphorylation [IMP]
- negative regulation of protein complex assembly [IMP]
- peptidyl-serine phosphorylation [IDA]
- platelet activation [TAS]
- positive regulation of ERK1 and ERK2 cascade [IMP]
- positive regulation of NF-kappaB transcription factor activity [ISS]
- positive regulation of T-helper 2 cell cytokine production [ISS]
- positive regulation of T-helper 2 cell differentiation [ISS]
- positive regulation of excitatory postsynaptic membrane potential [ISS]
- positive regulation of insulin receptor signaling pathway [ISS]
- positive regulation of interleukin-10 secretion [ISS]
- positive regulation of interleukin-13 secretion [ISS]
- positive regulation of interleukin-4 production [ISS]
- positive regulation of interleukin-5 secretion [ISS]
- protein phosphorylation [IDA]
- signal transduction [TAS]
- transforming growth factor beta receptor signaling pathway [TAS]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Homo sapiens
Affinity Capture-RNA
An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and associated RNA species identified by Northern blot, RT-PCR, affinity labeling, sequencing, or microarray analysis.
Publication
Genome-wide CRISPR screen identifies HNRNPL as a prostate cancer dependency regulating RNA splicing.
Alternative RNA splicing plays an important role in cancer. To determine which factors involved in RNA processing are essential in prostate cancer, we performed a genome-wide CRISPR/Cas9 knockout screen to identify the genes that are required for prostate cancer growth. Functional annotation defined a set of essential spliceosome and RNA binding protein (RBP) genes, including most notably heterogeneous nuclear ribonucleoprotein ... [more]
Proc. Natl. Acad. Sci. U.S.A. Dec. 27, 2016; 114(26);E5207-E5215 [Pubmed: 28611215]
Throughput
- High Throughput
Curated By
- BioGRID