BAIT
OCA5
YHL029C
Cytoplasmic protein required for replication of Brome mosaic virus; S. cerevisiae is a model system for studying replication of positive-strand RNA viruses in their natural hosts
Saccharomyces cerevisiae (S288c)
PREY
STB5
L000003368, YHR178W
Transcription factor; involved in regulating multidrug resistance and oxidative stress response; forms a heterodimer with Pdr1p; contains a Zn(II)2Cys6 zinc finger domain that interacts with a pleiotropic drug resistance element in vitro
GO Process (3)
GO Function (2)
GO Component (1)
Gene Ontology Biological Process
Gene Ontology Molecular Function
Saccharomyces cerevisiae (S288c)
Negative Genetic
Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.
Publication
Systematic analysis of complex genetic interactions.
To systematically explore complex genetic interactions, we constructed ~200,000 yeast triple mutants and scored negative trigenic interactions. We selected double-mutant query genes across a broad spectrum of biological processes, spanning a range of quantitative features of the global digenic interaction network and tested for a genetic interaction with a third mutation. Trigenic interactions often occurred among functionally related genes, and ... [more]
Science Apr. 20, 2018; 360(6386); [Pubmed: 29674565]
Quantitative Score
- -0.223147 [Confidence Score]
Throughput
- High Throughput
Ontology Terms
- phenotype: colony size (APO:0000063)
Additional Notes
- Digenic interaction: Query allele name: ho-delta+oca5-delta; Array allele name: stb5-delta (GI score = -0.223147, p-value = 0.00111; Digenic)
- Digenic interactions in this Synthetic genetic array (SGA) analysis were considered to be significant when epsilon > 0.08 and p < 0.05 (positive genetic interaction) and when epsilon < -0.08 and p < 0.05 (negative genetic interaction).
Curated By
- BioGRID