SRS2
Gene Ontology Biological Process
Gene Ontology Molecular Function
XRS2
Gene Ontology Biological Process
- base-excision repair [IGI, IMP]
- double-strand break repair via nonhomologous end joining [IMP]
- meiotic DNA double-strand break formation [IMP]
- mitochondrial double-strand break repair via homologous recombination [IMP]
- sporulation resulting in formation of a cellular spore [IMP]
- telomere maintenance [IMP]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Negative Genetic
Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.
Publication
Systematic analysis of complex genetic interactions.
To systematically explore complex genetic interactions, we constructed ~200,000 yeast triple mutants and scored negative trigenic interactions. We selected double-mutant query genes across a broad spectrum of biological processes, spanning a range of quantitative features of the global digenic interaction network and tested for a genetic interaction with a third mutation. Trigenic interactions often occurred among functionally related genes, and ... [more]
Quantitative Score
- -0.203072 [Confidence Score]
Throughput
- High Throughput
Ontology Terms
- phenotype: colony size (APO:0000063)
Additional Notes
- Digenic interaction: Query allele name: srs2-delta+ho-delta; Array allele name: xrs2-delta (GI score = -0.203072, p-value = 0.000354; Digenic)
- Digenic interactions in this Synthetic genetic array (SGA) analysis were considered to be significant when epsilon > 0.08 and p < 0.05 (positive genetic interaction) and when epsilon < -0.08 and p < 0.05 (negative genetic interaction).
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
XRS2 SRS2 | Dosage Lethality Dosage Lethality A genetic interaction is inferred when over expression or increased dosage of one gene causes lethality in a strain that is mutated or deleted for another gene. | Low/High | - | BioGRID | 530735 | |
SRS2 XRS2 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -5.2439 | BioGRID | 217262 | |
SRS2 XRS2 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.1714 | BioGRID | 390694 | |
XRS2 SRS2 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.1714 | BioGRID | 370064 | |
SRS2 XRS2 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.1428 | BioGRID | 2135884 | |
SRS2 XRS2 | Synthetic Growth Defect Synthetic Growth Defect A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell. | Low | - | BioGRID | 2468553 | |
SRS2 XRS2 | Synthetic Growth Defect Synthetic Growth Defect A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell. | High | - | BioGRID | 454019 | |
SRS2 XRS2 | Synthetic Growth Defect Synthetic Growth Defect A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell. | High | - | BioGRID | 452230 | |
XRS2 SRS2 | Synthetic Lethality Synthetic Lethality A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition. | Low | - | BioGRID | 159083 | |
XRS2 SRS2 | Synthetic Lethality Synthetic Lethality A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition. | High | - | BioGRID | 458000 | |
SRS2 XRS2 | Synthetic Lethality Synthetic Lethality A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition. | Low | - | BioGRID | 165980 |
Curated By
- BioGRID