CASP3
Gene Ontology Biological Process
- activation of cysteine-type endopeptidase activity involved in apoptotic process by cytochrome c [TAS]
- apoptotic DNA fragmentation [TAS]
- apoptotic process [TAS]
- apoptotic signaling pathway [TAS]
- cellular component disassembly involved in execution phase of apoptosis [TAS]
- erythrocyte differentiation [IDA, TAS]
- execution phase of apoptosis [IDA, IMP]
- extracellular matrix disassembly [TAS]
- extracellular matrix organization [TAS]
- hippo signaling [TAS]
- intrinsic apoptotic signaling pathway [TAS]
- keratinocyte differentiation [IBA]
- negative regulation of apoptotic process [IGI]
- neuron differentiation [IBA]
- neurotrophin TRK receptor signaling pathway [TAS]
- platelet formation [TAS]
- positive regulation of apoptotic process [TAS]
- proteolysis [IDA]
- regulation of apoptotic process [TAS]
- regulation of cysteine-type endopeptidase activity involved in apoptotic process [TAS]
- response to tumor necrosis factor [TAS]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
- cytosol [IDA, TAS]
- nucleoplasm [TAS]
- nucleus [IDA]
- plasma membrane [TAS]
BLM
Gene Ontology Biological Process
- ATP catabolic process [IDA]
- DNA double-strand break processing [IDA]
- DNA duplex unwinding [IDA, IMP]
- DNA recombination [NAS]
- DNA repair [NAS]
- DNA strand renaturation [IDA]
- cellular response to DNA damage stimulus [IDA, IMP]
- cellular response to camptothecin [IDA]
- cellular response to hydroxyurea [IDA]
- cellular response to ionizing radiation [IDA]
- double-strand break repair via homologous recombination [NAS]
- mitotic G2 DNA damage checkpoint [IDA]
- negative regulation of DNA recombination [IMP]
- negative regulation of cell division [IMP]
- positive regulation of transcription, DNA-templated [IDA]
- protein oligomerization [IDA]
- regulation of cyclin-dependent protein serine/threonine kinase activity [IMP]
- replication fork processing [IDA]
- replication fork protection [NAS]
- response to X-ray [IDA]
Gene Ontology Molecular Function- ATP binding [IDA]
- ATP-dependent DNA helicase activity [IDA, IMP]
- ATP-dependent helicase activity [IDA]
- ATPase activity [IDA]
- G-quadruplex DNA binding [IDA]
- annealing helicase activity [IDA]
- bubble DNA binding [IDA]
- four-way junction helicase activity [IDA]
- helicase activity [IDA]
- p53 binding [IPI]
- protein binding [IPI]
- single-stranded DNA binding [IDA]
- ATP binding [IDA]
- ATP-dependent DNA helicase activity [IDA, IMP]
- ATP-dependent helicase activity [IDA]
- ATPase activity [IDA]
- G-quadruplex DNA binding [IDA]
- annealing helicase activity [IDA]
- bubble DNA binding [IDA]
- four-way junction helicase activity [IDA]
- helicase activity [IDA]
- p53 binding [IPI]
- protein binding [IPI]
- single-stranded DNA binding [IDA]
Gene Ontology Cellular Component
Biochemical Activity (Proteolytic Processing)
An interaction is inferred from the biochemical effect of one protein upon another, for example, GTP-GDP exchange activity or phosphorylation of a substrate by a kinase. The bait protein executes the activity on the substrate hit protein. A Modification value is recorded for interactions of this type with the possible values Phosphorylation, Ubiquitination, Sumoylation, Dephosphorylation, Methylation, Prenylation, Acetylation, Deubiquitination, Proteolytic Processing, Glucosylation, Nedd(Rub1)ylation, Deacetylation, No Modification, Demethylation.
Publication
Cleavage of the Bloom's syndrome gene product during apoptosis by caspase-3 results in an impaired interaction with topoisomerase IIIalpha.
In higher eukaryotes, the integration of signals triggered in response to certain types of stress can result in programmed cell death. Central to these events is the sequential activation of a cascade of proteinases known as caspases. The final activated effector caspases of this cascade digest a number of cellular proteins, in some cases increasing their enzymatic activity, in others ... [more]
Throughput
- Low Throughput
Additional Notes
- Caspase-3 main cleavage site is located at the junction between the N-terminal and central helicase domains of BLM. Proteolytic cleavage by caspase-3 produces a 120 kDa fragment, which contains the intact helicase domain and three smaller fragments, the r
Curated By
- BioGRID