AR
Gene Ontology Biological Process
- androgen receptor signaling pathway [IDA]
- cell growth [NAS]
- cell proliferation [NAS]
- cell-cell signaling [TAS]
- gene expression [TAS]
- intracellular receptor signaling pathway [IDA]
- negative regulation of extrinsic apoptotic signaling pathway [IDA]
- negative regulation of integrin biosynthetic process [IDA]
- positive regulation of NF-kappaB transcription factor activity [IMP]
- positive regulation of cell proliferation [IDA]
- positive regulation of integrin biosynthetic process [IDA]
- positive regulation of phosphorylation [IMP]
- positive regulation of transcription from RNA polymerase II promoter [IDA, IMP]
- positive regulation of transcription from RNA polymerase III promoter [IDA]
- positive regulation of transcription, DNA-templated [IDA]
- prostate gland development [NAS]
- protein oligomerization [IDA]
- regulation of establishment of protein localization to plasma membrane [IDA]
- sex differentiation [NAS]
- signal transduction [TAS]
- transcription initiation from RNA polymerase II promoter [TAS]
- transcription, DNA-templated [IDA]
- transport [TAS]
Gene Ontology Molecular Function- DNA binding [NAS]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding [IDA]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding transcription factor activity involved in positive regulation of transcription [IDA]
- RNA polymerase II transcription factor binding [IPI]
- androgen binding [NAS]
- androgen receptor activity [IDA, IMP, NAS, TAS]
- beta-catenin binding [IDA, IPI, TAS]
- chromatin binding [IDA]
- enzyme binding [IPI]
- ligand-activated sequence-specific DNA binding RNA polymerase II transcription factor activity [IDA]
- protein binding [IPI]
- protein dimerization activity [NAS]
- receptor binding [IPI]
- sequence-specific DNA binding transcription factor activity [IDA]
- transcription factor binding [IPI]
- transcription regulatory region DNA binding [IDA]
- DNA binding [NAS]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding [IDA]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding transcription factor activity involved in positive regulation of transcription [IDA]
- RNA polymerase II transcription factor binding [IPI]
- androgen binding [NAS]
- androgen receptor activity [IDA, IMP, NAS, TAS]
- beta-catenin binding [IDA, IPI, TAS]
- chromatin binding [IDA]
- enzyme binding [IPI]
- ligand-activated sequence-specific DNA binding RNA polymerase II transcription factor activity [IDA]
- protein binding [IPI]
- protein dimerization activity [NAS]
- receptor binding [IPI]
- sequence-specific DNA binding transcription factor activity [IDA]
- transcription factor binding [IPI]
- transcription regulatory region DNA binding [IDA]
Gene Ontology Cellular Component
STAT3
Gene Ontology Biological Process
- JAK-STAT cascade [TAS]
- JAK-STAT cascade involved in growth hormone signaling pathway [IDA, ISS, TAS]
- astrocyte differentiation [ISS]
- cellular component movement [TAS]
- cellular response to hormone stimulus [IDA]
- cytokine-mediated signaling pathway [NAS]
- eating behavior [ISS]
- eye photoreceptor cell differentiation [ISS]
- glucose homeostasis [ISS]
- growth hormone receptor signaling pathway [IDA]
- interleukin-6-mediated signaling pathway [IDA]
- intracellular receptor signaling pathway [IDA]
- negative regulation of transcription from RNA polymerase II promoter [TAS]
- nervous system development [TAS]
- neurotrophin TRK receptor signaling pathway [TAS]
- phosphorylation [ISS]
- positive regulation of Notch signaling pathway [ISS]
- positive regulation of transcription from RNA polymerase II promoter [IDA]
- positive regulation of transcription, DNA-templated [ISS]
- protein import into nucleus [IDA]
- radial glial cell differentiation [ISS]
- regulation of transcription from RNA polymerase II promoter [ISS]
- regulation of transcription, DNA-templated [IDA]
- response to estradiol [IDA]
- sexual reproduction [ISS]
- signal transduction [TAS]
- temperature homeostasis [ISS]
Gene Ontology Molecular Function- DNA binding [ISS]
- RNA polymerase II repressing transcription factor binding [IPI]
- ligand-activated sequence-specific DNA binding RNA polymerase II transcription factor activity [IDA]
- protein binding [IPI]
- protein dimerization activity [ISS]
- protein kinase binding [ISS]
- protein phosphatase binding [IPI]
- sequence-specific DNA binding transcription factor activity [TAS]
- transcription factor binding [IPI]
- transcription regulatory region DNA binding [IDA]
- DNA binding [ISS]
- RNA polymerase II repressing transcription factor binding [IPI]
- ligand-activated sequence-specific DNA binding RNA polymerase II transcription factor activity [IDA]
- protein binding [IPI]
- protein dimerization activity [ISS]
- protein kinase binding [ISS]
- protein phosphatase binding [IPI]
- sequence-specific DNA binding transcription factor activity [TAS]
- transcription factor binding [IPI]
- transcription regulatory region DNA binding [IDA]
Reconstituted Complex
An interaction is detected between purified proteins in vitro.
Publication
Activation of the androgen receptor N-terminal domain by interleukin-6 via MAPK and STAT3 signal transduction pathways.
The androgen receptor (AR) is a ligand-activated transcription factor that mediates the biological responses of androgens. However, non-androgenic pathways have also been shown to activate the AR. The mechanism of cross-talk between the interleukin-6 (IL-6) and AR signal transduction pathways was investigated in LNCaP human prostate cancer cells. IL-6 induced several androgen-response element-driven reporters that are dependent upon the AR, ... [more]
Throughput
- Low Throughput
Additional Notes
- Direct interaction between amino acids 234-558 of the AR NTD and STAT3 following IL-6 treatment
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
AR STAT3 | Affinity Capture-MS Affinity Capture-MS An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods. | High | - | BioGRID | 3471588 | |
AR STAT3 | Affinity Capture-Western Affinity Capture-Western An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins. | Low | - | BioGRID | 244170 | |
AR STAT3 | Affinity Capture-Western Affinity Capture-Western An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins. | Low | - | BioGRID | - | |
STAT3 AR | Affinity Capture-Western Affinity Capture-Western An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins. | Low | - | BioGRID | - |
Curated By
- BioGRID