SEC72
Gene Ontology Biological Process
Gene Ontology Molecular Function
Gene Ontology Cellular Component
UME6
Gene Ontology Biological Process
- chromatin remodeling [IMP]
- lipid particle organization [IMP]
- negative regulation of inositol biosynthetic process by negative regulation of transcription from RNA polymerase II promoter [IMP]
- negative regulation of transcription from RNA polymerase II promoter during meiosis [IMP]
- negative regulation of transcription from RNA polymerase II promoter during mitosis [IMP]
- nitrogen catabolite repression of transcription from RNA polymerase II promoter [IMP]
- positive regulation of meiosis by negative regulation of transcription from RNA polymerase II promoter [IMP]
- positive regulation of meiosis by positive regulation of transcription from RNA polymerase II promoter [IMP]
- positive regulation of phosphatidylcholine biosynthetic process by positive regulation of transcription from RNA polymerase II promoter [IMP]
- positive regulation of phosphatidylserine biosynthetic process by positive regulation of transcription from RNA polymerase II promoter [IMP]
- positive regulation of transcription from RNA polymerase II promoter during meiosis [IMP]
- pseudohyphal growth [IMP]
- spore germination [IMP]
Gene Ontology Molecular Function- RNA polymerase II core promoter proximal region sequence-specific DNA binding [IDA]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding transcription factor activity involved in negative regulation of transcription [IDA, IMP]
- repressing transcription factor binding [IDA, IPI]
- sequence-specific DNA binding [IDA]
- transcription factor binding transcription factor activity [IGI]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding [IDA]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding transcription factor activity involved in negative regulation of transcription [IDA, IMP]
- repressing transcription factor binding [IDA, IPI]
- sequence-specific DNA binding [IDA]
- transcription factor binding transcription factor activity [IGI]
Gene Ontology Cellular Component
Negative Genetic
Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.
Publication
Systematic analysis of complex genetic interactions.
To systematically explore complex genetic interactions, we constructed ~200,000 yeast triple mutants and scored negative trigenic interactions. We selected double-mutant query genes across a broad spectrum of biological processes, spanning a range of quantitative features of the global digenic interaction network and tested for a genetic interaction with a third mutation. Trigenic interactions often occurred among functionally related genes, and ... [more]
Quantitative Score
- -0.092405 [Confidence Score]
Throughput
- High Throughput
Ontology Terms
- phenotype: colony size (APO:0000063)
Additional Notes
- Trigenic interaction: Query allele name: sec16-2+sec72-delta; Array allele name: ume6-delta (GI score = -0.092405, p-value = 0.0350; Novel)
- Trigenic negative genetic interactions in this triple mutant Synthetic genetic array (SGA) analysis were considered to be significant when tau < -0.08 and p < 0.05.
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
SEC72 UME6 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.1254 | BioGRID | 399652 | |
UME6 SEC72 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.1254 | BioGRID | 368202 | |
SEC72 UME6 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.1607 | BioGRID | 2153811 | |
SEC72 UME6 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -5.9066 | BioGRID | 896951 | |
UME6 SEC72 | Synthetic Lethality Synthetic Lethality A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition. | High | - | BioGRID | 3675498 |
Curated By
- BioGRID