BAIT

RAD1

LPB9, ssDNA endodeoxyribonuclease RAD1, L000001555, YPL022W
Single-stranded DNA endonuclease (with Rad10p); cleaves single-stranded DNA during nucleotide excision repair and double-strand break repair; subunit of Nucleotide Excision Repair Factor 1 (NEF1); homolog of human XPF protein
Saccharomyces cerevisiae (S288c)
PREY

MRC1

YCL060C, chromatin-modulating protein MRC1, YCL061C
S-phase checkpoint protein required for DNA replication; couples DNA helicase and DNA polymerase; interacts with and stabilizes Pol2p at stalled replication forks during stress, where it forms a pausing complex with Tof1p and is phosphorylated by Mec1p; with Hog1p defines a novel S-phase checkpoint that permits eukaryotic cells to prevent conflicts between DNA replication and transcription; protects uncapped telomeres; degradation via Dia2p help cells resume cell cycle
Saccharomyces cerevisiae (S288c)

Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Publication

Tel1/ATM prevents degradation of replication forks that reverse after topoisomerase poisoning.

Menin L, Ursich S, Trovesi C, Zellweger R, Lopes M, Longhese MP, Clerici M

In both yeast and mammals, the topoisomerase poison camptothecin (CPT) induces fork reversal, which has been proposed to stabilize replication forks, thus providing time for the repair of CPT-induced lesions and supporting replication restart. We show that Tel1, the Saccharomyces cerevisiae orthologue of human ATM kinase, stabilizes CPT-induced reversed forks by counteracting their nucleolytic degradation by the MRX complex. Tel1-lacking ... [more]

EMBO Rep. May. 08, 2018; (); [Pubmed: 29739811]

Throughput

  • Low Throughput

Ontology Terms

  • resistance to chemicals (APO:0000087)
  • vegetative growth (APO:0000106)

Additional Notes

  • MRC1 deletion increased the CPT hypersensitivity of rad27, sae2, and tdp1/rad1 double mutant cells

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
RAD1 MRC1
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Low-BioGRID
863675

Curated By

  • BioGRID