ETV6
Gene Ontology Biological Process
Gene Ontology Molecular Function- RNA polymerase II regulatory region sequence-specific DNA binding [IDA]
- RNA polymerase II transcription regulatory region sequence-specific DNA binding transcription factor activity involved in negative regulation of transcription [IC]
- protein binding [IPI]
- protein domain specific binding [IPI]
- sequence-specific DNA binding RNA polymerase II transcription factor activity [IBA]
- sequence-specific DNA binding transcription factor activity [TAS]
- RNA polymerase II regulatory region sequence-specific DNA binding [IDA]
- RNA polymerase II transcription regulatory region sequence-specific DNA binding transcription factor activity involved in negative regulation of transcription [IC]
- protein binding [IPI]
- protein domain specific binding [IPI]
- sequence-specific DNA binding RNA polymerase II transcription factor activity [IBA]
- sequence-specific DNA binding transcription factor activity [TAS]
GRB2
Gene Ontology Biological Process
- Fc-epsilon receptor signaling pathway [TAS]
- Fc-gamma receptor signaling pathway involved in phagocytosis [TAS]
- Ras protein signal transduction [TAS]
- T cell costimulation [TAS]
- axon guidance [TAS]
- blood coagulation [TAS]
- cell-cell signaling [TAS]
- cellular response to ionizing radiation [IMP]
- epidermal growth factor receptor signaling pathway [TAS]
- fibroblast growth factor receptor signaling pathway [TAS]
- innate immune response [TAS]
- insulin receptor signaling pathway [IPI, TAS]
- leukocyte migration [TAS]
- negative regulation of epidermal growth factor receptor signaling pathway [TAS]
- neurotrophin TRK receptor signaling pathway [TAS]
- phosphatidylinositol-mediated signaling [TAS]
- platelet activation [TAS]
- positive regulation of reactive oxygen species metabolic process [IMP]
- receptor internalization [IMP]
- signal transduction in response to DNA damage [IMP]
Gene Ontology Molecular Function- SH3 domain binding [IDA]
- SH3/SH2 adaptor activity [TAS]
- ephrin receptor binding [IPI]
- epidermal growth factor receptor binding [IPI]
- identical protein binding [IPI]
- insulin receptor substrate binding [IPI]
- neurotrophin TRKA receptor binding [IPI]
- poly(A) RNA binding [IDA]
- protein binding [IPI]
- protein kinase binding [IPI]
- SH3 domain binding [IDA]
- SH3/SH2 adaptor activity [TAS]
- ephrin receptor binding [IPI]
- epidermal growth factor receptor binding [IPI]
- identical protein binding [IPI]
- insulin receptor substrate binding [IPI]
- neurotrophin TRKA receptor binding [IPI]
- poly(A) RNA binding [IDA]
- protein binding [IPI]
- protein kinase binding [IPI]
Gene Ontology Cellular Component
Far Western
An interaction is detected between a protein immobilized on a membrane and a purified protein probe.
Publication
A direct binding site for Grb2 contributes to transformation and leukemogenesis by the Tel-Abl (ETV6-Abl) tyrosine kinase.
A direct binding site for the Grb2 adapter protein is required for the induction of fatal chronic myeloid leukemia (CML)-like disease in mice by Bcr-Abl. Here, we demonstrate direct binding of Grb2 to the Tel-Abl (ETV6-Abl) fusion protein, the product of complex (9;12) chromosomal translocations in human leukemia, via tyrosine 314 encoded by TEL exon 5. A Tel-Abl point mutant ... [more]
Throughput
- Low Throughput
Additional Notes
- Via tyrosine 314 encoded by TEL exon 5. A Tel-Abl point mutant (Y314F) and a splice variant without TEL exon 5 sequences (Deltae5) lacked Grb2 interaction and exhibited decreased binding and phosphorylation of the scaffolding protein Gab2
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
ETV6 GRB2 | Affinity Capture-Western Affinity Capture-Western An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins. | Low | - | BioGRID | 245159 |
Curated By
- BioGRID