FET3
Gene Ontology Biological Process
Gene Ontology Molecular Function
Gene Ontology Cellular Component
FET4
Gene Ontology Biological Process
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Synthetic Rescue
A genetic interaction is inferred when mutations or deletions of one gene rescues the lethality or growth defect of a strain mutated or deleted for another gene.
Publication
Ace1 prevents intracellular copper accumulation by regulating Fet3 expression and thereby restricting Aft1 activity.
In the yeast Saccharomyces cerevisiae Aft1, the low iron-sensing transcription factor is known to regulate the expression of the FET3 gene. However, we found that a strain-lacking FET3 is more sensitive to copper excess than a strain-lacking AFT1, and accordingly, FET3 expression is not fully compromised in the latter. These findings suggest that, under such conditions, another regulator comes into ... [more]
Throughput
- Low Throughput
Ontology Terms
- phenotype: metal resistance (APO:0000090)
Additional Notes
- All the double mutants exhibited increased resistance to copper
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
FET3 FET4 | Dosage Rescue Dosage Rescue A genetic interaction is inferred when over expression or increased dosage of one gene rescues the lethality or growth defect of a strain that is mutated or deleted for another gene. | Low | - | BioGRID | 2202249 | |
FET4 FET3 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.6733 | BioGRID | 407126 | |
FET3 FET4 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.6733 | BioGRID | 404408 | |
FET4 FET3 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.6678 | BioGRID | 2166639 | |
FET3 FET4 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.5404 | BioGRID | 2161590 | |
FET3 FET4 | Phenotypic Enhancement Phenotypic Enhancement A genetic interaction is inferred when mutation or overexpression of one gene results in enhancement of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene. | Low | - | BioGRID | 156229 | |
FET4 FET3 | Synthetic Growth Defect Synthetic Growth Defect A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell. | Low | - | BioGRID | 354126 | |
FET3 FET4 | Synthetic Lethality Synthetic Lethality A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition. | High | - | BioGRID | 442710 |
Curated By
- BioGRID