EXO1
Gene Ontology Biological Process
Gene Ontology Molecular Function
RAD52
Gene Ontology Biological Process
- DNA amplification [IMP]
- DNA recombinase assembly [IDA]
- DNA strand renaturation [IDA]
- double-strand break repair via break-induced replication [IMP]
- double-strand break repair via homologous recombination [IMP]
- double-strand break repair via single-strand annealing [IGI]
- meiotic joint molecule formation [IGI, IMP]
- postreplication repair [IMP]
- telomere maintenance via recombination [IMP]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Synthetic Lethality
A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.
Publication
Sgs1 Binding to Rad51 Stimulates Homology-Directed DNA Repair in Saccharomyces cerevisiae.
Accurate repair of DNA breaks is essential to maintain genome integrity and cellular fitness. Sgs1, the sole member of the RecQ family of DNA helicases in Saccharomyces cerevisiae, is important for both early and late stages of homology-dependent repair. Its large number of physical and genetic interactions with DNA recombination, repair, and replication factors has established Sgs1 as a key ... [more]
Throughput
- Low Throughput
Ontology Terms
- phenotype: inviable (APO:0000112)
Additional Notes
- deleting RAD52 was lethal in the sgs1/exo1 mutant, and deletion of RAD59 caused an extreme growth defect
- genetic complex
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
RAD52 EXO1 | Phenotypic Suppression Phenotypic Suppression A genetic interaction is inferred when mutation or over expression of one gene results in suppression of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene. | Low | - | BioGRID | 2347587 | |
RAD52 EXO1 | Synthetic Lethality Synthetic Lethality A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition. | Low | - | BioGRID | 480999 |
Curated By
- BioGRID