SNRPB
Gene Ontology Biological Process
- RNA metabolic process [TAS]
- RNA splicing [TAS]
- gene expression [TAS]
- histone mRNA metabolic process [TAS]
- mRNA 3'-end processing [TAS]
- mRNA splicing, via spliceosome [IC, TAS]
- ncRNA metabolic process [TAS]
- spliceosomal snRNP assembly [IDA, TAS]
- termination of RNA polymerase II transcription [TAS]
- transcription from RNA polymerase II promoter [TAS]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
SNRPD3
Gene Ontology Biological Process
- RNA metabolic process [TAS]
- RNA splicing [TAS]
- gene expression [TAS]
- histone mRNA metabolic process [TAS]
- mRNA 3'-end processing [TAS]
- mRNA splicing, via spliceosome [IC, TAS]
- ncRNA metabolic process [TAS]
- spliceosomal snRNP assembly [IDA, TAS]
- termination of RNA polymerase II transcription [TAS]
- transcription from RNA polymerase II promoter [TAS]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
- SMN-Sm protein complex [IDA]
- U1 snRNP [IDA]
- U12-type spliceosomal complex [IDA]
- U4 snRNP [IDA]
- U7 snRNP [IDA]
- catalytic step 2 spliceosome [IDA]
- cytoplasm [IDA]
- cytosol [IDA, TAS]
- extracellular vesicular exosome [IDA]
- methylosome [IDA]
- nucleoplasm [IDA, TAS]
- pICln-Sm protein complex [IDA]
- small nuclear ribonucleoprotein complex [TAS]
- spliceosomal complex [TAS]
Negative Genetic
Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.
Publication
Mapping the Genetic Landscape of Human Cells.
Seminal yeast studies have established the value of comprehensively mapping genetic interactions (GIs) for inferring gene function. Efforts in human cells using focused gene sets underscore the utility of this approach, but the feasibility of generating large-scale, diverse human GI maps remains unresolved. We developed a CRISPR interference platform for large-scale quantitative mapping of human GIs. We systematically perturbed 222,784 ... [more]
Quantitative Score
- -3.685792569 [Confidence Score]
Throughput
- High Throughput
Ontology Terms
- phenotype: growth abnormality (HP:0001507)
- cell type: k-562 cell (BTO:0000664)
Additional Notes
- CRISPR GI screen
- Cell Line: K562 EFO:0002067/Jurkat EFO:0002796
- Experimental Setup: Timecourse
- GIST: A-phenotypic negative/positive genetic interaction
- Interactions in this CRISPR interference (CRISPRi) analysis were considered to be significant when GI <= -3 (negative genetic interaction) or GI >= 3 (positive genetic interaction).
- K562 cell line Replicate Average GI score = -3.685792569
- Library: CRISPRi v1
- Significance Threshold: (positive genetic interaction) 3
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
SNRPB SNRPD3 | Affinity Capture-MS Affinity Capture-MS An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods. | High | - | BioGRID | 3370664 | |
SNRPB SNRPD3 | Affinity Capture-MS Affinity Capture-MS An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods. | High | 0.9944 | BioGRID | 3220696 | |
SNRPB SNRPD3 | Affinity Capture-MS Affinity Capture-MS An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods. | High | 0.9928 | BioGRID | 3035357 | |
SNRPB SNRPD3 | Affinity Capture-Western Affinity Capture-Western An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins. | Low | - | BioGRID | - | |
SNRPD3 SNRPB | Co-crystal Structure Co-crystal Structure Interaction directly demonstrated at the atomic level by X-ray crystallography. Also used for NMR or Electron Microscopy (EM) structures. If there is no obvious bait-hit directionality to the interaction involving 3 or more proteins, then the co-crystallized proteins should be listed as a complex. | Low | - | BioGRID | - | |
SNRPB SNRPD3 | Co-fractionation Co-fractionation Interaction inferred from the presence of two or more protein subunits in a partially purified protein preparation. If co-fractionation is demonstrated between 3 or more proteins, then add them as a complex. | High | 0.961 | BioGRID | 740821 | |
SNRPB SNRPD3 | Co-fractionation Co-fractionation Interaction inferred from the presence of two or more protein subunits in a partially purified protein preparation. If co-fractionation is demonstrated between 3 or more proteins, then add them as a complex. | High | - | BioGRID | 3438352 | |
SNRPB SNRPD3 | Cross-Linking-MS (XL-MS) Cross-Linking-MS (XL-MS) An interaction is detected between two proteins using chemically reactive or photo-activatable cross-linking reagents that covalently link amino acids in close proximity, followed by mass spectrometry analysis to identify the linked peptides (reviewed in PMID 37406423, 37104977). Experiments may be carried with live cells or cell lysates in which all proteins are expressed at endogenous levels (e.g. PMID 34349018, 35235311) or with recombinant proteins (e.g., PMID 28537071). | High | - | BioGRID | - | |
SNRPB SNRPD3 | Cross-Linking-MS (XL-MS) Cross-Linking-MS (XL-MS) An interaction is detected between two proteins using chemically reactive or photo-activatable cross-linking reagents that covalently link amino acids in close proximity, followed by mass spectrometry analysis to identify the linked peptides (reviewed in PMID 37406423, 37104977). Experiments may be carried with live cells or cell lysates in which all proteins are expressed at endogenous levels (e.g. PMID 34349018, 35235311) or with recombinant proteins (e.g., PMID 28537071). | High | - | BioGRID | 3682859 | |
SNRPB SNRPD3 | Cross-Linking-MS (XL-MS) Cross-Linking-MS (XL-MS) An interaction is detected between two proteins using chemically reactive or photo-activatable cross-linking reagents that covalently link amino acids in close proximity, followed by mass spectrometry analysis to identify the linked peptides (reviewed in PMID 37406423, 37104977). Experiments may be carried with live cells or cell lysates in which all proteins are expressed at endogenous levels (e.g. PMID 34349018, 35235311) or with recombinant proteins (e.g., PMID 28537071). | High | - | BioGRID | 3756146 | |
SNRPB SNRPD3 | Two-hybrid Two-hybrid Bait protein expressed as a DNA binding domain (DBD) fusion and prey expressed as a transcriptional activation domain (TAD) fusion and interaction measured by reporter gene activation. | Low | - | BioGRID | - | |
SNRPD3 SNRPB | Two-hybrid Two-hybrid Bait protein expressed as a DNA binding domain (DBD) fusion and prey expressed as a transcriptional activation domain (TAD) fusion and interaction measured by reporter gene activation. | High | - | BioGRID | - |
Curated By
- BioGRID