BAIT
CLEC14A
C14orf27, CEG1, EGFR-5, UNQ236/PRO269
C-type lectin domain family 14, member A
GO Process (0)
GO Function (0)
GO Component (1)
Gene Ontology Cellular Component
Homo sapiens
PREY
PSMC3
TBP1
proteasome (prosome, macropain) 26S subunit, ATPase, 3
GO Process (24)
GO Function (4)
GO Component (7)
Gene Ontology Biological Process
- ATP catabolic process [ISS]
- DNA damage response, signal transduction by p53 class mediator resulting in cell cycle arrest [TAS]
- G1/S transition of mitotic cell cycle [TAS]
- RNA metabolic process [TAS]
- anaphase-promoting complex-dependent proteasomal ubiquitin-dependent protein catabolic process [TAS]
- antigen processing and presentation of exogenous peptide antigen via MHC class I [TAS]
- antigen processing and presentation of exogenous peptide antigen via MHC class I, TAP-dependent [TAS]
- antigen processing and presentation of peptide antigen via MHC class I [TAS]
- apoptotic process [TAS]
- cellular nitrogen compound metabolic process [TAS]
- gene expression [TAS]
- mRNA metabolic process [TAS]
- mitotic cell cycle [TAS]
- negative regulation of apoptotic process [TAS]
- negative regulation of nucleic acid-templated transcription [TAS]
- negative regulation of ubiquitin-protein ligase activity involved in mitotic cell cycle [TAS]
- positive regulation of ubiquitin-protein ligase activity involved in mitotic cell cycle [TAS]
- protein polyubiquitination [TAS]
- regulation of apoptotic process [TAS]
- regulation of cellular amino acid metabolic process [TAS]
- regulation of nucleic acid-templated transcription [TAS]
- regulation of ubiquitin-protein ligase activity involved in mitotic cell cycle [TAS]
- small molecule metabolic process [TAS]
- viral process [TAS]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Homo sapiens
Affinity Capture-MS
An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.
Publication
SILAC-based proteomics of human primary endothelial cell morphogenesis unveils tumor angiogenic markers.
Proteomics has been successfully used for cell culture on dishes, but more complex cellular systems have proven to be challenging and so far poorly approached with proteomics. Because of the complexity of the angiogenic program, we still do not have a complete understanding of the molecular mechanisms involved in this process, and there have been no in depth quantitative proteomic ... [more]
Mol. Cell Proteomics Dec. 01, 2013; 12(12);3599-611 [Pubmed: 23979707]
Throughput
- High Throughput
Curated By
- BioGRID