Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Publication

Schizosaccharomyces pombe NIMA-related kinase, Fin1, regulates spindle formation and an affinity of Polo for the SPB.

Grallert A, Hagan IM

The Aspergillus nidulans protein kinase NIMA regulates mitotic commitment, while the human and Xenopus equivalents influence centrosome function. Two recessive, temperature-sensitive mutations in the Schizosaccharomyces pombe NIMA homologue, Fin1, blocked spindle formation at 37 degrees C. One of the two spindle pole bodies (SPBs) failed to nucleate microtubules. This phenotype was reduced by accelerating mitotic commitment through genetic inhibition of ... [more]

EMBO J. Jun. 17, 2002; 21(12);3096-107 [Pubmed: 12065422]

Throughput

  • Low Throughput

Ontology Terms

  • phenotype: inviable (APO:0000112)

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
FIN1 BUB1
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Low-BioGRID
300573

Curated By

  • BioGRID