HSPA8
Gene Ontology Biological Process
- ATP catabolic process [IDA]
- RNA metabolic process [TAS]
- axon guidance [TAS]
- gene expression [TAS]
- mRNA metabolic process [TAS]
- membrane organization [TAS]
- negative regulation of fibril organization [IDA]
- negative regulation of transcription, DNA-templated [IDA]
- neurotransmitter secretion [TAS]
- post-Golgi vesicle-mediated transport [TAS]
- protein folding [NAS]
- protein refolding [IDA]
- response to unfolded protein [NAS]
- synaptic transmission [TAS]
Gene Ontology Molecular Function- ATP binding [IDA]
- ATPase activity [IDA]
- ATPase activity, coupled [NAS]
- G-protein coupled receptor binding [IPI]
- MHC class II protein complex binding [IDA]
- enzyme binding [IPI]
- heat shock protein binding [IPI]
- poly(A) RNA binding [IDA]
- protein binding [IPI]
- ubiquitin protein ligase binding [IPI]
- unfolded protein binding [IDA]
- ATP binding [IDA]
- ATPase activity [IDA]
- ATPase activity, coupled [NAS]
- G-protein coupled receptor binding [IPI]
- MHC class II protein complex binding [IDA]
- enzyme binding [IPI]
- heat shock protein binding [IPI]
- poly(A) RNA binding [IDA]
- protein binding [IPI]
- ubiquitin protein ligase binding [IPI]
- unfolded protein binding [IDA]
Gene Ontology Cellular Component
- Prp19 complex [IDA]
- blood microparticle [IDA]
- clathrin-sculpted gamma-aminobutyric acid transport vesicle membrane [TAS]
- cytosol [IDA, TAS]
- extracellular space [IDA]
- extracellular vesicular exosome [IDA]
- focal adhesion [IDA]
- intracellular [NAS]
- membrane [IDA]
- nucleus [IDA]
- plasma membrane [TAS]
- ribonucleoprotein complex [IDA]
- ubiquitin ligase complex [IDA]
HSPD1
Gene Ontology Biological Process
- 'de novo' protein folding [ISS]
- ATP catabolic process [ISS]
- B cell activation [IDA]
- B cell cytokine production [IDA]
- B cell proliferation [IDA]
- MyD88-dependent toll-like receptor signaling pathway [IDA]
- T cell activation [IDA]
- activation of cysteine-type endopeptidase activity involved in apoptotic process [IDA]
- chaperone-mediated protein complex assembly [ISS]
- isotype switching to IgG isotypes [IDA]
- negative regulation of apoptotic process [IMP]
- positive regulation of T cell activation [IDA, ISS]
- positive regulation of T cell mediated immune response to tumor cell [IDA]
- positive regulation of apoptotic process [IMP]
- positive regulation of interferon-alpha production [IDA]
- positive regulation of interferon-gamma production [IDA, ISS]
- positive regulation of interleukin-10 production [IDA]
- positive regulation of interleukin-12 production [IDA]
- positive regulation of interleukin-6 production [IDA]
- positive regulation of macrophage activation [IDA]
- protein maturation [ISS]
- protein refolding [IDA]
- protein stabilization [IMP, ISS]
- response to unfolded protein [IDA]
Gene Ontology Molecular Function- ATPase activity [ISS]
- DNA replication origin binding [ISS]
- chaperone binding [IPI]
- double-stranded RNA binding [IDA]
- lipopolysaccharide binding [IDA]
- p53 binding [IPI]
- poly(A) RNA binding [IDA]
- protein binding [IPI]
- single-stranded DNA binding [ISS]
- ubiquitin protein ligase binding [IPI]
- unfolded protein binding [IC, ISS]
- ATPase activity [ISS]
- DNA replication origin binding [ISS]
- chaperone binding [IPI]
- double-stranded RNA binding [IDA]
- lipopolysaccharide binding [IDA]
- p53 binding [IPI]
- poly(A) RNA binding [IDA]
- protein binding [IPI]
- single-stranded DNA binding [ISS]
- ubiquitin protein ligase binding [IPI]
- unfolded protein binding [IC, ISS]
Gene Ontology Cellular Component
- cell surface [IDA]
- coated pit [IDA]
- coated vesicle [IDA]
- cyclin-dependent protein kinase activating kinase holoenzyme complex [IDA]
- cytoplasm [IDA]
- cytosol [IDA]
- early endosome [IDA]
- extracellular space [IDA]
- extracellular vesicular exosome [IDA]
- lipopolysaccharide receptor complex [IDA]
- membrane [IDA]
- mitochondrial inner membrane [ISS]
- mitochondrial matrix [TAS]
- mitochondrion [IDA]
- protein complex [IDA]
- secretory granule [ISS]
Affinity Capture-MS
An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.
Publication
Genetic and Proteomic Interrogation of Lower Confidence Candidate Genes Reveals Signaling Networks in β-Catenin-Active Cancers.
Genome-scale expression studies and comprehensive loss-of-function genetic screens have focused almost exclusively on the highest confidence candidate genes. Here, we describe a strategy for characterizing the lower confidence candidates identified by such approaches. We interrogated 177 genes that we classified as essential for the proliferation of cancer cells exhibiting constitutive β-catenin activity and integrated data for each of the candidates, ... [more]
Throughput
- High Throughput
Additional Notes
- High-credibility protein interactions were identified using draft-PPI and a method for protein interaction credibility scoring (ICS).
Related interactions
| Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
|---|---|---|---|---|---|---|
| HSPA8 HSPD1 | Affinity Capture-MS Affinity Capture-MS An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods. | High | - | BioGRID | - | |
| HSPD1 HSPA8 | Co-fractionation Co-fractionation Interaction inferred from the presence of two or more protein subunits in a partially purified protein preparation. If co-fractionation is demonstrated between 3 or more proteins, then add them as a complex. | High | 0.878 | BioGRID | 744793 | |
| HSPD1 HSPA8 | Co-fractionation Co-fractionation Interaction inferred from the presence of two or more protein subunits in a partially purified protein preparation. If co-fractionation is demonstrated between 3 or more proteins, then add them as a complex. | High | - | BioGRID | 3436861 |
Curated By
- BioGRID