Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Publication

Separation of phenotypes in mutant alleles of the Schizosaccharomyces pombe cell-cycle checkpoint gene rad1+.

Kanter-Smoler G, Knudsen KE, Jimenez G, Sunnerhagen P, Subramani S

The Schizosaccharomyces pombe rad1+ gene is involved in the G2 DNA damage cell-cycle checkpoint and in coupling mitosis to completed DNA replication. It is also required for viability when the cdc17 (DNA ligase) or wee1 proteins are inactivated. We have introduced mutations into the coding regions of rad1+ by site-directed mutagenesis. The effects of these mutations on the DNA damage ... [more]

Mol. Biol. Cell Dec. 01, 1995; 6(12);1793-805 [Pubmed: 8590806]

Throughput

  • Low Throughput

Ontology Terms

  • phenotype: inviable (APO:0000112)

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
WEE1 RAD1
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Low-PomBase
-

Curated By

  • BioGRID