PRMT5
Gene Ontology Biological Process
- RNA metabolic process [TAS]
- cell proliferation [TAS]
- circadian regulation of gene expression [ISS]
- endothelial cell activation [IMP]
- gene expression [TAS]
- histone H4-R3 methylation [ISS, NAS]
- ncRNA metabolic process [TAS]
- peptidyl-arginine N-methylation [IDA]
- peptidyl-arginine methylation [IMP]
- peptidyl-arginine methylation, to symmetrical-dimethyl arginine [IMP]
- regulation of mitosis [TAS]
- regulation of transcription, DNA-templated [IBA]
- spliceosomal snRNP assembly [IMP, TAS]
Gene Ontology Molecular Function
ILF3
Gene Ontology Biological Process
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Biochemical Activity (Methylation)
An interaction is inferred from the biochemical effect of one protein upon another, for example, GTP-GDP exchange activity or phosphorylation of a substrate by a kinase. The bait protein executes the activity on the substrate hit protein. A Modification value is recorded for interactions of this type with the possible values Phosphorylation, Ubiquitination, Sumoylation, Dephosphorylation, Methylation, Prenylation, Acetylation, Deubiquitination, Proteolytic Processing, Glucosylation, Nedd(Rub1)ylation, Deacetylation, No Modification, Demethylation.
Publication
RioK1, a new interactor of protein arginine methyltransferase 5 (PRMT5), competes with pICln for binding and modulates PRMT5 complex composition and substrate specificity.
Protein arginine methylation plays a critical role in differential gene expression through modulating protein-protein and protein-DNA/RNA interactions. Although numerous proteins undergo arginine methylation, only limited information is available on how protein arginine methyltransferases (PRMTs) identify their substrates. The human PRMT5 complex consists of PRMT5, WD45/MEP50 (WD repeat domain 45/methylosome protein 50), and pICln and catalyzes the symmetrical arginine dimethylation of ... [more]
Throughput
- Low Throughput
Curated By
- BioGRID