BAIT

CSE4

CSL2, centromeric DNA-binding histone H3-like protein CSE4, L000002719, YKL049C
Centromere protein that resembles histone H3; associated with promoters, accessible chromatin and RNA polymerase II-bound regions; phosphorylated Cse4p associates with centromeres; required for proper kinetochore function; levels regulated by E3 ubiquitin ligase Psh1p; phosphorylation of Cse4p may destabilize defective kinetochores to promote bi-orientation; ubiquitination of N terminus regulates Cse4p proteolysis for faithful chromosome segregation; human CENP-A homolog
Saccharomyces cerevisiae (S288c)
PREY

CHL4

CTF17, MCM17, L000000321, YDR254W
Outer kinetochore protein required for chromosome stability; involved in new kinetochore assembly and sister chromatid cohesion; forms a stable complex with Iml3p; peripheral component of the Ctf19 kinetochore complex that interacts with Ctf19p, Ctf3p, and Mif2p; required for the spindle assembly checkpoint; orthologous to human centromere constitutive-associated network (CCAN) subunit CENP-N and fission yeast mis15
Saccharomyces cerevisiae (S288c)

Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Publication

The kinetochore module Okp1CENP-Q/Ame1CENP-U is a reader for N-terminal modifications on the centromeric histone Cse4CENP-A.

Anedchenko EA, Samel-Pommerencke A, Tran Nguyen TM, Shahnejat-Bushehri S, Poepsel J, Lauster D, Herrmann A, Rappsilber J, Cuomo A, Bonaldi T, Ehrenhofer-Murray AE

Kinetochores are supramolecular assemblies that link centromeres to microtubules for sister chromatid segregation in mitosis. For this, the inner kinetochore CCAN/Ctf19 complex binds to centromeric chromatin containing the histone variant CENP-A, but whether the interaction of kinetochore components to centromeric nucleosomes is regulated by posttranslational modifications is unknown. Here, we investigated how methylation of arginine 37 (R37Me) and acetylation of ... [more]

EMBO J. Jan. 03, 2019; 38(1); [Pubmed: 30389668]

Throughput

  • Low Throughput

Ontology Terms

  • phenotype: inviable (APO:0000112)

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
CHL4 CSE4
Co-localization
Co-localization

Interaction inferred from two proteins that co-localize in the cell by indirect immunofluorescence only when in addition, if one gene is deleted, the other protein becomes mis-localized. Also includes co-dependent association of proteins with promoter DNA in chromatin immunoprecipitation experiments.

Low-BioGRID
144197
CSE4 CHL4
Co-purification
Co-purification

An interaction is inferred from the identification of two or more protein subunits in a purified protein complex, as obtained by classical biochemical fractionation or affinity purification and one or more additional fractionation steps.

Low-BioGRID
-
CSE4 CHL4
Co-purification
Co-purification

An interaction is inferred from the identification of two or more protein subunits in a purified protein complex, as obtained by classical biochemical fractionation or affinity purification and one or more additional fractionation steps.

Low-BioGRID
-
CSE4 CHL4
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.288BioGRID
2605803
CSE4 CHL4
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.6133BioGRID
3581432
CSE4 CHL4
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Low-BioGRID
3560841
CSE4 CHL4
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Low-BioGRID
659033

Curated By

  • BioGRID