BAIT

PARK2

AR-JP, LPRS2, PDJ, PRKN, KB-152G3.1
parkin RBR E3 ubiquitin protein ligase
GO Process (58)
GO Function (22)
GO Component (12)

Gene Ontology Biological Process

Homo sapiens
PREY

RIPK1

RIP, RIP1
receptor (TNFRSF)-interacting serine-threonine kinase 1
GO Process (42)
GO Function (8)
GO Component (6)

Gene Ontology Biological Process

Homo sapiens

Affinity Capture-Western

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins.

Publication

Parkin regulates NF-κB by mediating site-specific ubiquitination of RIPK1.

Wang Y, Shan B, Liang Y, Wei H, Yuan J

Parkin (Park2), a RING-between-RING-type E3 ubiquitin ligase, has been implicated in regulating NF-κB. Mutations in Parkin are associated with Parkinson's disease. Here we investigated the interaction of Parkin with Receptor-interacting protein kinase 1 (RIPK1) kinase, a key mediator of multiple signaling pathways activated by TNFR1 including NF-κB pathway. We report that Parkin interacts with RIPK1 and mediates K63 ubiquitination of ... [more]

Cell Death Dis Jun. 28, 2018; 9(7);732 [Pubmed: 29955050]

Throughput

  • Low Throughput

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
PARK2 RIPK1
Affinity Capture-MS
Affinity Capture-MS

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.

High-BioGRID
3465308
RIPK1 PARK2
Affinity Capture-MS
Affinity Capture-MS

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.

High-BioGRID
-
PARK2 RIPK1
Biochemical Activity
Biochemical Activity

An interaction is inferred from the biochemical effect of one protein upon another, for example, GTP-GDP exchange activity or phosphorylation of a substrate by a kinase. The bait protein executes the activity on the substrate hit protein. A Modification value is recorded for interactions of this type with the possible values Phosphorylation, Ubiquitination, Sumoylation, Dephosphorylation, Methylation, Prenylation, Acetylation, Deubiquitination, Proteolytic Processing, Glucosylation, Nedd(Rub1)ylation, Deacetylation, No Modification, Demethylation.

Low-BioGRID
2525803

Curated By

  • BioGRID