BAIT
RECQL4
RECQ4
RecQ protein-like 4
GO Process (5)
GO Function (4)
GO Component (1)
Gene Ontology Biological Process
Gene Ontology Molecular Function
Homo sapiens
PREY
ADAR
ADAR1, AGS6, DRADA, DSH, DSRAD, G1P1, IFI-4, IFI4, K88DSRBP, P136, RP11-61L14.5
adenosine deaminase, RNA-specific
GO Process (15)
GO Function (3)
GO Component (6)
Gene Ontology Biological Process
- adenosine to inosine editing [IDA, IMP, TAS]
- base conversion or substitution editing [IDA]
- cytokine-mediated signaling pathway [TAS]
- gene expression [TAS]
- innate immune response [TAS]
- mRNA modification [TAS]
- miRNA loading onto RISC involved in gene silencing by miRNA [IDA]
- negative regulation of protein kinase activity by regulation of protein phosphorylation [IDA, IMP]
- positive regulation of viral genome replication [IDA, IMP]
- pre-miRNA processing [IDA]
- protein export from nucleus [IDA]
- protein import into nucleus [IDA]
- response to interferon-alpha [IDA]
- response to virus [IMP]
- type I interferon signaling pathway [TAS]
Gene Ontology Molecular Function
Homo sapiens
Affinity Capture-MS
An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.
Publication
Cell cycle-dependent phosphorylation regulates RECQL4 pathway choice and ubiquitination in DNA double-strand break repair.
Pathway choice within DNA double-strand break (DSB) repair is a tightly regulated process to maintain genome integrity. RECQL4, deficient in Rothmund-Thomson Syndrome, promotes the two major DSB repair pathways, non-homologous end joining (NHEJ) and homologous recombination (HR). Here we report that RECQL4 promotes and coordinates NHEJ and HR in different cell cycle phases. RECQL4 interacts with Ku70 to promote NHEJ ... [more]
Nat Commun Dec. 11, 2016; 8(1);2039 [Pubmed: 29229926]
Throughput
- High Throughput
Curated By
- BioGRID