BAIT
RECQL4
RECQ4
RecQ protein-like 4
GO Process (5)
GO Function (4)
GO Component (1)
Gene Ontology Biological Process
Gene Ontology Molecular Function
Homo sapiens
PREY
LONP1
LON, LONP, LonHS, PIM1, PRSS15, hLON
lon peptidase 1, mitochondrial
GO Process (8)
GO Function (12)
GO Component (5)
Gene Ontology Biological Process
- cellular response to oxidative stress [IC, IDA]
- mitochondrial DNA metabolic process [NAS]
- mitochondrial genome maintenance [NAS]
- mitochondrion organization [IMP]
- oxidation-dependent protein catabolic process [IMP]
- protein homooligomerization [IDA]
- proteolysis involved in cellular protein catabolic process [IDA]
- response to hypoxia [IEP]
Gene Ontology Molecular Function- ADP binding [IDA]
- ATP binding [IDA]
- ATP-dependent peptidase activity [IDA]
- DNA polymerase binding [IPI]
- G-quadruplex DNA binding [IDA]
- mitochondrial heavy strand promoter anti-sense binding [IDA]
- mitochondrial heavy strand promoter sense binding [IDA]
- mitochondrial light strand promoter anti-sense binding [IDA]
- mitochondrial light strand promoter sense binding [IDA]
- protein binding [IPI]
- sequence-specific DNA binding [IDA]
- single-stranded RNA binding [IDA]
- ADP binding [IDA]
- ATP binding [IDA]
- ATP-dependent peptidase activity [IDA]
- DNA polymerase binding [IPI]
- G-quadruplex DNA binding [IDA]
- mitochondrial heavy strand promoter anti-sense binding [IDA]
- mitochondrial heavy strand promoter sense binding [IDA]
- mitochondrial light strand promoter anti-sense binding [IDA]
- mitochondrial light strand promoter sense binding [IDA]
- protein binding [IPI]
- sequence-specific DNA binding [IDA]
- single-stranded RNA binding [IDA]
Gene Ontology Cellular Component
Homo sapiens
Affinity Capture-MS
An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.
Publication
Cell cycle-dependent phosphorylation regulates RECQL4 pathway choice and ubiquitination in DNA double-strand break repair.
Pathway choice within DNA double-strand break (DSB) repair is a tightly regulated process to maintain genome integrity. RECQL4, deficient in Rothmund-Thomson Syndrome, promotes the two major DSB repair pathways, non-homologous end joining (NHEJ) and homologous recombination (HR). Here we report that RECQL4 promotes and coordinates NHEJ and HR in different cell cycle phases. RECQL4 interacts with Ku70 to promote NHEJ ... [more]
Nat Commun Dec. 11, 2016; 8(1);2039 [Pubmed: 29229926]
Throughput
- High Throughput
Curated By
- BioGRID