BAIT

RNH201

RNH35, Rnh2A, L000004047, YNL072W
Ribonuclease H2 catalytic subunit; removes RNA primers during Okazaki fragment synthesis and errant ribonucleotides misincorporated during DNA replication; role in ribonucleotide excision repair; homolog of RNAse HI; related to human AGS4 which causes Aicardi-Goutieres syndrome
GO Process (1)
GO Function (1)
GO Component (2)

Gene Ontology Biological Process

Gene Ontology Molecular Function

Gene Ontology Cellular Component

Saccharomyces cerevisiae (S288c)
PREY

MRE11

NGS1, RAD58, XRS4, MRX complex nuclease subunit, L000004732, L000001149, L000004275, YMR224C
Nuclease subunit of the MRX complex with Rad50p and Xrs2p; complex functions in repair of DNA double-strand breaks and in telomere stability; Mre11p associates with Ser/Thr-rich ORFs in premeiotic phase; nuclease activity required for MRX function; widely conserved; forms nuclear foci upon DNA replication stress
Saccharomyces cerevisiae (S288c)

Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Publication

Apn2 resolves blocked 3' ends and suppresses Top1-induced mutagenesis at genomic rNMP sites.

Li F, Wang Q, Seol JH, Che J, Lu X, Shim EY, Lee SE, Niu H

Ribonucleoside monophosphates (rNMPs) mis-incorporated during DNA replication are removed by RNase H2-dependent excision repair or by topoisomerase I (Top1)-catalyzed cleavage. The cleavage of rNMPs by Top1 produces 3' ends harboring terminal adducts, such as 2',3'-cyclic phosphate or Top1 cleavage complex (Top1cc), and leads to frequent mutagenesis and DNA damage checkpoint induction. We surveyed a range of candidate enzymes from Saccharomyces ... [more]

Nat. Struct. Mol. Biol. Feb. 18, 2019; (); [Pubmed: 30778235]

Throughput

  • Low Throughput

Ontology Terms

  • phenotype: inviable (APO:0000112)

Additional Notes

  • genetic complex
  • mre11 is synthetic lethal in pol2-M644G/rnh201 cells

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
MRE11 RNH201
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.1505BioGRID
405911
RNH201 MRE11
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.295BioGRID
2168325
MRE11 RNH201
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-BioGRID
3492361

Curated By

  • BioGRID