BAIT

APN2

ETH1, DNA-(apurinic or apyrimidinic site) lyase APN2, L000004434, YBL019W
Class II abasic (AP) endonuclease involved in repair of DNA damage; homolog of human HAP1 and E. coli exoIII
GO Process (1)
GO Function (3)
GO Component (1)
Saccharomyces cerevisiae (S288c)
PREY

TDP1

tyrosyl-DNA phosphodiesterase 1, S000007461, YBR223C
Tyrosyl-DNA phosphodiesterase I; hydrolyzes 3' and 5'-phosphotyrosyl bonds; involved in the repair of DNA lesions created by topoisomerase I and topoisomerase II; mutations in human homolog result in the neurodegenerative disease SCANI
GO Process (1)
GO Function (2)
GO Component (1)

Gene Ontology Biological Process

Gene Ontology Cellular Component

Saccharomyces cerevisiae (S288c)

Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Publication

Apn2 resolves blocked 3' ends and suppresses Top1-induced mutagenesis at genomic rNMP sites.

Li F, Wang Q, Seol JH, Che J, Lu X, Shim EY, Lee SE, Niu H

Ribonucleoside monophosphates (rNMPs) mis-incorporated during DNA replication are removed by RNase H2-dependent excision repair or by topoisomerase I (Top1)-catalyzed cleavage. The cleavage of rNMPs by Top1 produces 3' ends harboring terminal adducts, such as 2',3'-cyclic phosphate or Top1 cleavage complex (Top1cc), and leads to frequent mutagenesis and DNA damage checkpoint induction. We surveyed a range of candidate enzymes from Saccharomyces ... [more]

Nat. Struct. Mol. Biol. Feb. 18, 2019; (); [Pubmed: 30778235]

Throughput

  • Low Throughput

Ontology Terms

  • phenotype: inviable (APO:0000112)

Additional Notes

  • genetic complex
  • triple mutants show synthetic lethality

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
TDP1 APN2
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Low-BioGRID
426677

Curated By

  • BioGRID