BAIT

RPN10

MCB1, SUN1, proteasome regulatory particle base subunit RPN10, L000003108, YHR200W
Non-ATPase base subunit of the 19S RP of the 26S proteasome; N-terminus plays a role in maintaining the structural integrity of the regulatory particle (RP); binds selectively to polyubiquitin chains; homolog of the mammalian S5a protein
GO Process (1)
GO Function (2)
GO Component (2)
Saccharomyces cerevisiae (S288c)
PREY

RPN7

proteasome regulatory particle lid subunit RPN7, L000004307, YPR108W
Essential non-ATPase regulatory subunit of the 26S proteasome; similar to another S. cerevisiae regulatory subunit, Rpn5p, as well as to mammalian proteasome subunits
GO Process (1)
GO Function (1)
GO Component (2)

Gene Ontology Biological Process

Gene Ontology Molecular Function

Saccharomyces cerevisiae (S288c)

Affinity Capture-MS

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.

Publication

Rpn13p and Rpn14p are involved in the recognition of ubiquitinated Gcn4p by the 26S proteasome.

Seong KM, Baek JH, Yu MH, Kim J

The 26S proteasome, composed of the 20S core and 19S regulatory complexes, is important for the turnover of polyubiquitinated proteins. Each subunit of the complex plays a special role in proteolytic function, including substrate recruitment, deubiquitination, and structural contribution. To assess the function of some non-essential subunits in the 26S proteasome, we isolated the 26S proteasome from deletion strains of ... [more]

FEBS Lett. May. 29, 2007; 581(13);2567-73 [Pubmed: 17499717]

Throughput

  • Low Throughput

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
RPN10 RPN7
Affinity Capture-MS
Affinity Capture-MS

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.

High-BioGRID
-
RPN7 RPN10
Affinity Capture-MS
Affinity Capture-MS

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.

High-BioGRID
-
RPN10 RPN7
Affinity Capture-MS
Affinity Capture-MS

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.

High-BioGRID
-
RPN10 RPN7
Affinity Capture-MS
Affinity Capture-MS

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.

High-BioGRID
-
RPN10 RPN7
Affinity Capture-MS
Affinity Capture-MS

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.

High-BioGRID
-
RPN7 RPN10
Affinity Capture-Western
Affinity Capture-Western

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins.

Low-BioGRID
-
RPN10 RPN7
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.142BioGRID
442813
RPN7 RPN10
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.142BioGRID
442814
RPN7 RPN10
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.3598BioGRID
2024294

Curated By

  • BioGRID