BAIT
CDC25A
CDC25A2
cell division cycle 25A
GO Process (9)
GO Function (2)
GO Component (2)
Gene Ontology Biological Process
- DNA replication [TAS]
- G1/S transition of mitotic cell cycle [TAS]
- G2/M transition of mitotic cell cycle [TAS]
- cell proliferation [TAS]
- cellular response to UV [IDA]
- mitotic cell cycle [TAS]
- regulation of cell cycle [TAS]
- regulation of cyclin-dependent protein serine/threonine kinase activity [TAS]
- response to radiation [IDA]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
- cytosol [TAS]
- nucleoplasm [TAS]
Homo sapiens
PREY
RELA
NFKB3, p65
v-rel avian reticuloendotheliosis viral oncogene homolog A
GO Process (43)
GO Function (20)
GO Component (5)
Gene Ontology Biological Process
- Fc-epsilon receptor signaling pathway [TAS]
- MyD88-dependent toll-like receptor signaling pathway [TAS]
- MyD88-independent toll-like receptor signaling pathway [TAS]
- T cell receptor signaling pathway [TAS]
- TRIF-dependent toll-like receptor signaling pathway [TAS]
- cellular defense response [NAS]
- cellular response to hydrogen peroxide [IDA]
- cellular response to interleukin-1 [IDA]
- cellular response to interleukin-6 [IMP]
- cellular response to nicotine [IMP]
- cellular response to peptide hormone stimulus [IMP]
- cellular response to tumor necrosis factor [IDA]
- cytokine-mediated signaling pathway [IDA]
- defense response to virus [NAS]
- inflammatory response [IDA]
- innate immune response [TAS]
- membrane protein intracellular domain proteolysis [TAS]
- negative regulation of apoptotic process [IDA, TAS]
- negative regulation of extrinsic apoptotic signaling pathway [IMP]
- negative regulation of transcription from RNA polymerase II promoter [IDA]
- negative regulation of transcription, DNA-templated [IDA]
- neurotrophin TRK receptor signaling pathway [TAS]
- nucleotide-binding oligomerization domain containing 2 signaling pathway [IDA]
- positive regulation of I-kappaB kinase/NF-kappaB signaling [IEP]
- positive regulation of NF-kappaB transcription factor activity [IDA, TAS]
- positive regulation of cell proliferation [IDA]
- positive regulation of miRNA metabolic process [IMP]
- positive regulation of transcription from RNA polymerase II promoter [IDA, IMP]
- positive regulation of transcription, DNA-templated [IDA]
- positive regulation of type I interferon production [TAS]
- regulation of inflammatory response [ISS]
- response to UV-B [IDA]
- response to interleukin-1 [IGI]
- response to organic substance [IDA]
- toll-like receptor 10 signaling pathway [TAS]
- toll-like receptor 2 signaling pathway [TAS]
- toll-like receptor 3 signaling pathway [TAS]
- toll-like receptor 4 signaling pathway [TAS]
- toll-like receptor 5 signaling pathway [TAS]
- toll-like receptor 9 signaling pathway [TAS]
- toll-like receptor TLR1:TLR2 signaling pathway [TAS]
- toll-like receptor TLR6:TLR2 signaling pathway [TAS]
- toll-like receptor signaling pathway [TAS]
Gene Ontology Molecular Function- DNA binding [IDA]
- NF-kappaB binding [IPI]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding [IDA]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding transcription factor activity involved in negative regulation of transcription [IDA]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding transcription factor activity involved in positive regulation of transcription [IDA]
- RNA polymerase II distal enhancer sequence-specific DNA binding [IDA]
- RNA polymerase II distal enhancer sequence-specific DNA binding transcription factor activity [IDA]
- RNA polymerase II distal enhancer sequence-specific DNA binding transcription factor activity involved in positive regulation of transcription [IDA]
- activating transcription factor binding [IPI]
- chromatin binding [IDA]
- identical protein binding [IDA, IPI]
- phosphate ion binding [IDA]
- protein N-terminus binding [IPI]
- protein binding [IPI]
- protein kinase binding [IPI]
- repressing transcription factor binding [IPI]
- sequence-specific DNA binding transcription factor activity [IDA]
- transcription factor binding [IPI]
- transcription regulatory region DNA binding [IDA]
- ubiquitin protein ligase binding [IPI]
- DNA binding [IDA]
- NF-kappaB binding [IPI]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding [IDA]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding transcription factor activity involved in negative regulation of transcription [IDA]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding transcription factor activity involved in positive regulation of transcription [IDA]
- RNA polymerase II distal enhancer sequence-specific DNA binding [IDA]
- RNA polymerase II distal enhancer sequence-specific DNA binding transcription factor activity [IDA]
- RNA polymerase II distal enhancer sequence-specific DNA binding transcription factor activity involved in positive regulation of transcription [IDA]
- activating transcription factor binding [IPI]
- chromatin binding [IDA]
- identical protein binding [IDA, IPI]
- phosphate ion binding [IDA]
- protein N-terminus binding [IPI]
- protein binding [IPI]
- protein kinase binding [IPI]
- repressing transcription factor binding [IPI]
- sequence-specific DNA binding transcription factor activity [IDA]
- transcription factor binding [IPI]
- transcription regulatory region DNA binding [IDA]
- ubiquitin protein ligase binding [IPI]
Homo sapiens
Negative Genetic
Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.
Publication
Synergistic drug combinations for cancer identified in a CRISPR screen for pairwise genetic interactions.
Identification of effective combination therapies is critical to address the emergence of drug-resistant cancers, but direct screening of all possible drug combinations is infeasible. Here we introduce a CRISPR-based double knockout (CDKO) system that improves the efficiency of combinatorial genetic screening using an effective strategy for cloning and sequencing paired single guide RNA (sgRNA) libraries and a robust statistical scoring ... [more]
Nat. Biotechnol. Mar. 20, 2017; 0(); [Pubmed: 28319085]
Quantitative Score
- -4.002 [Confidence Score]
Throughput
- High Throughput
Ontology Terms
- phenotype: growth abnormality (HP:0001507)
Additional Notes
- CRISPR GI screen
- Cell Line:K562 (EFO:0002067)
- Experimental Setup:Timecourse
- GIST: A-phenotypic negative genetic interaction
- Library:Drug Target-CDKO CRISPRn library
- Significance Threshold: q-value<0.05
Curated By
- BioGRID