BAIT

NEO1

putative aminophospholipid-translocating P4-type ATPase NEO1, L000004112, YIL048W
Putative aminophospholipid translocase (flippase); involved in endocytosis, vacuolar biogenesis and Golgi to ER vesicle-mediated transport; localizes to endosomes and the Golgi apparatus
Saccharomyces cerevisiae (S288c)
PREY

DRS2

FUN38, SWA3, aminophospholipid-translocating P4-type ATPase DRS2, L000000526, YAL026C
Trans-golgi network aminophospholipid translocase (flippase); maintains membrane lipid asymmetry in post-Golgi secretory vesicles; contributes to clathrin-coated vesicle formation, endocytosis, protein trafficking between the Golgi and endosomal system and the cellular response to mating pheromone; autoinhibited by its C-terminal tail; localizes to the trans-Golgi network; mutations in human homolog ATP8B1 result in liver disease
Saccharomyces cerevisiae (S288c)

Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Publication

The PQ-loop protein Any1 segregates Drs2 and Neo1 functions required for viability and plasma membrane phospholipid asymmetry.

Takar M, Huang Y, Graham TR

Membrane asymmetry is a key organizational feature of the plasma membrane. Type IV P-type ATPases (P4-ATPases) are phospholipid flippases that establish membrane asymmetry by translocating phospholipids, such as phosphatidylserine (PS) and phospatidylethanolamine (PE), from the exofacial leaflet to the cytosolic leaflet. Saccharomyces cerevisiae expresses five P4-ATPases: Drs2, Neo1, Dnf1, Dnf2 and Dnf3. Inactivation of Neo1 is lethal, suggesting Neo1 mediates ... [more]

J. Lipid Res. Mar. 01, 2019; (); [Pubmed: 30824614]

Throughput

  • Low Throughput

Ontology Terms

  • phenotype: inviable (APO:0000112)

Additional Notes

  • genetic complex
  • triple mutants are lethal

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
DRS2 NEO1
Dosage Rescue
Dosage Rescue

A genetic interaction is inferred when over expression or increased dosage of one gene rescues the lethality or growth defect of a strain that is mutated or deleted for another gene.

Low-BioGRID
1520473
NEO1 DRS2
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.3399BioGRID
1989780
NEO1 DRS2
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Low-BioGRID
158352
NEO1 DRS2
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Low-BioGRID
1114883

Curated By

  • BioGRID