XRN1
Gene Ontology Biological Process
- nonfunctional rRNA decay [IMP]
- nuclear-transcribed mRNA catabolic process [IMP]
- nuclear-transcribed mRNA catabolic process, nonsense-mediated decay [IMP]
- positive regulation of transcription elongation from RNA polymerase II promoter [IMP]
- positive regulation of transcription initiation from RNA polymerase II promoter [IMP]
- traversing start control point of mitotic cell cycle [IMP]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
RPS0B
Gene Ontology Biological Process
- cytoplasmic translation [IMP]
- endonucleolytic cleavage in ITS1 to separate SSU-rRNA from 5.8S rRNA and LSU-rRNA from tricistronic rRNA transcript (SSU-rRNA, 5.8S rRNA, LSU-rRNA) [IMP]
- endonucleolytic cleavage to generate mature 3'-end of SSU-rRNA from (SSU-rRNA, 5.8S rRNA, LSU-rRNA) [IMP]
- rRNA export from nucleus [IGI]
- ribosomal small subunit assembly [IMP]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Co-crystal Structure
Interaction directly demonstrated at the atomic level by X-ray crystallography. Also used for NMR or Electron Microscopy (EM) structures. If there is no obvious bait-hit directionality to the interaction involving 3 or more proteins, then the co-crystallized proteins should be listed as a complex.
Publication
Structure of the 80S ribosome-Xrn1 nuclease complex.
Messenger RNA (mRNA) homeostasis represents an essential part of gene expression, in which the generation of mRNA by RNA polymerase is counter-balanced by its degradation by nucleases. The conserved 5'-to-3' exoribonuclease Xrn1 has a crucial role in eukaryotic mRNA homeostasis by degrading decapped or cleaved mRNAs post-translationally and, more surprisingly, also co-translationally. Here we report that active Xrn1 can directly ... [more]
Throughput
- Low Throughput
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
RPS0B XRN1 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.1289 | BioGRID | 397123 | |
XRN1 RPS0B | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.1289 | BioGRID | 379293 |
Curated By
- BioGRID