BAIT

FZO1

mitofusin, L000004083, YBR179C
Mitofusin; integral membrane protein involved in mitochondrial outer membrane tethering and fusion; role in mitochondrial genome maintenance; efficient tethering and degradation of Fzo1p requires an intact N-terminal GTPase domain; targeted for destruction by the ubiquitin ligase SCF-Mdm30p and the cytosolic ubiquitin-proteasome system
GO Process (2)
GO Function (2)
GO Component (4)
Saccharomyces cerevisiae (S288c)
PREY

FZO1

mitofusin, L000004083, YBR179C
Mitofusin; integral membrane protein involved in mitochondrial outer membrane tethering and fusion; role in mitochondrial genome maintenance; efficient tethering and degradation of Fzo1p requires an intact N-terminal GTPase domain; targeted for destruction by the ubiquitin ligase SCF-Mdm30p and the cytosolic ubiquitin-proteasome system
GO Process (2)
GO Function (2)
GO Component (4)
Saccharomyces cerevisiae (S288c)

Co-fractionation

Interaction inferred from the presence of two or more protein subunits in a partially purified protein preparation. If co-fractionation is demonstrated between 3 or more proteins, then add them as a complex.

Publication

Two Cdc48 cofactors Ubp3 and Ubx2 regulate mitochondrial morphology and protein turnover.

Chowdhury A, Ogura T, Esaki M

Mitochondria continuously undergo coordinated fusion and fission during vegetative growth to keep their homogeneity and to remove damaged components. A cytosolic AAA ATPase, Cdc48, is implicated in the mitochondrial fusion event and turnover of a fusion-responsible GTPase in the mitochondrial outer membrane, Fzo1, suggesting a possible linkage of mitochondrial fusion and Fzo1 turnover. Here, we identified two Cdc48 cofactor proteins, ... [more]

J. Biochem. Nov. 01, 2018; 164(5);349-358 [Pubmed: 29924334]

Throughput

  • Low Throughput

Additional Notes

  • oligomerization

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
FZO1 FZO1
Affinity Capture-Western
Affinity Capture-Western

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins.

Low-BioGRID
-
FZO1 FZO1
Affinity Capture-Western
Affinity Capture-Western

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins.

Low-BioGRID
-
FZO1 FZO1
Affinity Capture-Western
Affinity Capture-Western

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins.

Low-BioGRID
-

Curated By

  • BioGRID