BAIT

SPT3

transcriptional regulator SPT3, L000002029, YDR392W
Subunit of the SAGA and SAGA-like transcriptional regulatory complexes; interacts with Spt15p to activate transcription of some RNA polymerase II-dependent genes, also functions to inhibit transcription at some promoters; relocalizes to the cytosol in response to hypoxia
Saccharomyces cerevisiae (S288c)
PREY

TOA1

L000002316, YOR194C
TFIIA large subunit; involved in transcriptional activation, acts as antirepressor or as coactivator; required, along with Toa2p, for ribosomal protein gene transcription in vivo; homologous to largest and second largest subunits of human and Drosophila TFIIA
Saccharomyces cerevisiae (S288c)

Dosage Rescue

A genetic interaction is inferred when over expression or increased dosage of one gene rescues the lethality or growth defect of a strain that is mutated or deleted for another gene.

Publication

Evidence that Spt3 functionally interacts with Mot1, TFIIA, and TATA-binding protein to confer promoter-specific transcriptional control in Saccharomyces cerevisiae.

Madison JM, Winston F

Spt3 of Saccharomyces cerevisiae is a factor required for normal transcription from particular RNA polymerase II-dependent promoters. Previous genetic and biochemical analyses have shown that Spt3 interacts with the yeast TATA-binding protein (TBP). To identify other factors that might interact with Spt3, we have screened for mutations that, in combination with an spt3 null mutation, lead to inviability. In this ... [more]

Mol. Cell. Biol. Jan. 01, 1997; 17(1);287-95 [Pubmed: 8972209]

Throughput

  • Low Throughput

Ontology Terms

  • phenotype: metabolism and growth (APO:0000094)

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
SPT3 TOA1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.145BioGRID
2036913
TOA1 SPT3
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Low-BioGRID
159021

Curated By

  • BioGRID