CAT
Gene Ontology Biological Process
- UV protection [IMP]
- hydrogen peroxide catabolic process [IDA]
- negative regulation of apoptotic process [IMP]
- nucleobase-containing small molecule metabolic process [TAS]
- osteoblast differentiation [IDA]
- protein homotetramerization [IDA]
- protein tetramerization [IDA]
- purine nucleobase metabolic process [TAS]
- purine nucleotide catabolic process [TAS]
- response to reactive oxygen species [IMP]
- small molecule metabolic process [TAS]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
SMARCA4
Gene Ontology Biological Process
- ATP catabolic process [IGI]
- ATP-dependent chromatin remodeling [IDA]
- chromatin remodeling [IC, IDA]
- negative regulation of G1/S transition of mitotic cell cycle [TAS]
- negative regulation of androgen receptor signaling pathway [IMP]
- negative regulation of cell growth [IMP]
- negative regulation of transcription from RNA polymerase II promoter [TAS]
- negative regulation of transcription from RNA polymerase II promoter during mitosis [TAS]
- negative regulation of transcription, DNA-templated [IDA, IMP]
- neural retina development [IEP]
- nucleosome disassembly [IDA]
- positive regulation by host of viral transcription [IMP]
- positive regulation of Wnt signaling pathway [IMP]
- positive regulation of sequence-specific DNA binding transcription factor activity [IDA]
- positive regulation of transcription from RNA polymerase II promoter [IDA, IGI]
- positive regulation of transcription, DNA-templated [IMP]
- regulation of transcription from RNA polymerase II promoter [NAS]
Gene Ontology Molecular Function- DNA polymerase binding [IPI]
- DNA-dependent ATPase activity [IGI]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding [IDA]
- RNA polymerase II distal enhancer sequence-specific DNA binding [IDA]
- RNA polymerase II transcription coactivator activity [IDA]
- Tat protein binding [IPI]
- androgen receptor binding [IPI]
- lysine-acetylated histone binding [IDA]
- nucleosomal DNA binding [IDA]
- p53 binding [IPI]
- protein N-terminus binding [IPI]
- protein binding [IPI]
- transcription coactivator activity [IMP, NAS]
- transcription corepressor activity [IDA]
- DNA polymerase binding [IPI]
- DNA-dependent ATPase activity [IGI]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding [IDA]
- RNA polymerase II distal enhancer sequence-specific DNA binding [IDA]
- RNA polymerase II transcription coactivator activity [IDA]
- Tat protein binding [IPI]
- androgen receptor binding [IPI]
- lysine-acetylated histone binding [IDA]
- nucleosomal DNA binding [IDA]
- p53 binding [IPI]
- protein N-terminus binding [IPI]
- protein binding [IPI]
- transcription coactivator activity [IMP, NAS]
- transcription corepressor activity [IDA]
Gene Ontology Cellular Component
Proximity Label-MS
An interaction is inferred when a bait-enzyme fusion protein selectively modifies a vicinal protein with a diffusible reactive product, followed by affinity capture of the modified protein and identification by mass spectrometric methods.
Publication
An AP-MS- and BioID-compatible MAC-tag enables comprehensive mapping of protein interactions and subcellular localizations.
Protein-protein interactions govern almost all cellular functions. These complex networks of stable and transient associations can be mapped by affinity purification mass spectrometry (AP-MS) and complementary proximity-based labeling methods such as BioID. To exploit the advantages of both strategies, we here design and optimize an integrated approach combining AP-MS and BioID in a single construct, which we term MAC-tag. We ... [more]
Throughput
- High Throughput
Related interactions
| Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
|---|---|---|---|---|---|---|
| CAT SMARCA4 | Affinity Capture-MS Affinity Capture-MS An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods. | High | - | BioGRID | 1447291 |
Curated By
- BioGRID