BAIT
TRMT61B
tRNA methyltransferase 61B
GO Process (2)
GO Function (2)
GO Component (2)
Gene Ontology Biological Process
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Homo sapiens
PREY
LONP1
LON, LONP, LonHS, PIM1, PRSS15, hLON
lon peptidase 1, mitochondrial
GO Process (8)
GO Function (12)
GO Component (5)
Gene Ontology Biological Process
- cellular response to oxidative stress [IC, IDA]
- mitochondrial DNA metabolic process [NAS]
- mitochondrial genome maintenance [NAS]
- mitochondrion organization [IMP]
- oxidation-dependent protein catabolic process [IMP]
- protein homooligomerization [IDA]
- proteolysis involved in cellular protein catabolic process [IDA]
- response to hypoxia [IEP]
Gene Ontology Molecular Function- ADP binding [IDA]
- ATP binding [IDA]
- ATP-dependent peptidase activity [IDA]
- DNA polymerase binding [IPI]
- G-quadruplex DNA binding [IDA]
- mitochondrial heavy strand promoter anti-sense binding [IDA]
- mitochondrial heavy strand promoter sense binding [IDA]
- mitochondrial light strand promoter anti-sense binding [IDA]
- mitochondrial light strand promoter sense binding [IDA]
- protein binding [IPI]
- sequence-specific DNA binding [IDA]
- single-stranded RNA binding [IDA]
- ADP binding [IDA]
- ATP binding [IDA]
- ATP-dependent peptidase activity [IDA]
- DNA polymerase binding [IPI]
- G-quadruplex DNA binding [IDA]
- mitochondrial heavy strand promoter anti-sense binding [IDA]
- mitochondrial heavy strand promoter sense binding [IDA]
- mitochondrial light strand promoter anti-sense binding [IDA]
- mitochondrial light strand promoter sense binding [IDA]
- protein binding [IPI]
- sequence-specific DNA binding [IDA]
- single-stranded RNA binding [IDA]
Gene Ontology Cellular Component
Homo sapiens
Proximity Label-MS
An interaction is inferred when a bait-enzyme fusion protein selectively modifies a vicinal protein with a diffusible reactive product, followed by affinity capture of the modified protein and identification by mass spectrometric methods.
Publication
An AP-MS- and BioID-compatible MAC-tag enables comprehensive mapping of protein interactions and subcellular localizations.
Protein-protein interactions govern almost all cellular functions. These complex networks of stable and transient associations can be mapped by affinity purification mass spectrometry (AP-MS) and complementary proximity-based labeling methods such as BioID. To exploit the advantages of both strategies, we here design and optimize an integrated approach combining AP-MS and BioID in a single construct, which we term MAC-tag. We ... [more]
Nat Commun Dec. 22, 2017; 9(1);1188 [Pubmed: 29568061]
Throughput
- High Throughput
Curated By
- BioGRID