KAT2B
Gene Ontology Biological Process
- N-terminal peptidyl-lysine acetylation [IDA]
- Notch signaling pathway [TAS]
- cell cycle arrest [TAS]
- cellular response to insulin stimulus [IDA]
- chromatin organization [TAS]
- chromatin remodeling [IDA, NAS]
- gene expression [TAS]
- histone H3 acetylation [IDA]
- internal peptidyl-lysine acetylation [IDA]
- negative regulation of cell proliferation [IDA]
- peptidyl-lysine acetylation [IDA]
- positive regulation of transcription from RNA polymerase II promoter [IDA]
- protein acetylation [TAS]
- regulation of protein ADP-ribosylation [IDA]
- transcription from RNA polymerase I promoter [TAS]
- transcription initiation from RNA polymerase I promoter [TAS]
- transcription initiation from RNA polymerase II promoter [TAS]
Gene Ontology Molecular Function- acetyltransferase activity [IDA]
- cyclin-dependent protein serine/threonine kinase inhibitor activity [ISS]
- histone acetyltransferase activity [IDA]
- histone deacetylase binding [IPI]
- lysine N-acetyltransferase activity, acting on acetyl phosphate as donor [IDA, ISS]
- protein binding [IPI]
- protein complex binding [IDA]
- protein kinase binding [ISS]
- transcription coactivator activity [IDA]
- transcription cofactor activity [IPI]
- transcription factor binding [IPI]
- acetyltransferase activity [IDA]
- cyclin-dependent protein serine/threonine kinase inhibitor activity [ISS]
- histone acetyltransferase activity [IDA]
- histone deacetylase binding [IPI]
- lysine N-acetyltransferase activity, acting on acetyl phosphate as donor [IDA, ISS]
- protein binding [IPI]
- protein complex binding [IDA]
- protein kinase binding [ISS]
- transcription coactivator activity [IDA]
- transcription cofactor activity [IPI]
- transcription factor binding [IPI]
Gene Ontology Cellular Component
AR
Gene Ontology Biological Process
- androgen receptor signaling pathway [IDA]
- cell growth [NAS]
- cell proliferation [NAS]
- cell-cell signaling [TAS]
- gene expression [TAS]
- intracellular receptor signaling pathway [IDA]
- negative regulation of extrinsic apoptotic signaling pathway [IDA]
- negative regulation of integrin biosynthetic process [IDA]
- positive regulation of NF-kappaB transcription factor activity [IMP]
- positive regulation of cell proliferation [IDA]
- positive regulation of integrin biosynthetic process [IDA]
- positive regulation of phosphorylation [IMP]
- positive regulation of transcription from RNA polymerase II promoter [IDA, IMP]
- positive regulation of transcription from RNA polymerase III promoter [IDA]
- positive regulation of transcription, DNA-templated [IDA]
- prostate gland development [NAS]
- protein oligomerization [IDA]
- regulation of establishment of protein localization to plasma membrane [IDA]
- sex differentiation [NAS]
- signal transduction [TAS]
- transcription initiation from RNA polymerase II promoter [TAS]
- transcription, DNA-templated [IDA]
- transport [TAS]
Gene Ontology Molecular Function- DNA binding [NAS]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding [IDA]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding transcription factor activity involved in positive regulation of transcription [IDA]
- RNA polymerase II transcription factor binding [IPI]
- androgen binding [NAS]
- androgen receptor activity [IDA, IMP, NAS, TAS]
- beta-catenin binding [IDA, IPI, TAS]
- chromatin binding [IDA]
- enzyme binding [IPI]
- ligand-activated sequence-specific DNA binding RNA polymerase II transcription factor activity [IDA]
- protein binding [IPI]
- protein dimerization activity [NAS]
- receptor binding [IPI]
- sequence-specific DNA binding transcription factor activity [IDA]
- transcription factor binding [IPI]
- transcription regulatory region DNA binding [IDA]
- DNA binding [NAS]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding [IDA]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding transcription factor activity involved in positive regulation of transcription [IDA]
- RNA polymerase II transcription factor binding [IPI]
- androgen binding [NAS]
- androgen receptor activity [IDA, IMP, NAS, TAS]
- beta-catenin binding [IDA, IPI, TAS]
- chromatin binding [IDA]
- enzyme binding [IPI]
- ligand-activated sequence-specific DNA binding RNA polymerase II transcription factor activity [IDA]
- protein binding [IPI]
- protein dimerization activity [NAS]
- receptor binding [IPI]
- sequence-specific DNA binding transcription factor activity [IDA]
- transcription factor binding [IPI]
- transcription regulatory region DNA binding [IDA]
Gene Ontology Cellular Component
Affinity Capture-Western
An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins.
Publication
Cyclin D1 binds the androgen receptor and regulates hormone-dependent signaling in a p300/CBP-associated factor (P/CAF)-dependent manner.
The androgen receptor (AR) is a ligand-regulated member of the nuclear receptor superfamily. The cyclin D1 gene product, which encodes the regulatory subunit of holoenzymes that phosphorylate the retinoblastoma protein (pRB), promotes cellular proliferation and inhibits cellular differentiation in several different cell types. Herein the cyclin D1 gene product inhibited ligand-induced AR- enhancer function through a pRB-independent mechanism requiring the ... [more]
Throughput
- Low Throughput
Related interactions
| Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
|---|---|---|---|---|---|---|
| KAT2B AR | Biochemical Activity Biochemical Activity An interaction is inferred from the biochemical effect of one protein upon another, for example, GTP-GDP exchange activity or phosphorylation of a substrate by a kinase. The bait protein executes the activity on the substrate hit protein. A Modification value is recorded for interactions of this type with the possible values Phosphorylation, Ubiquitination, Sumoylation, Dephosphorylation, Methylation, Prenylation, Acetylation, Deubiquitination, Proteolytic Processing, Glucosylation, Nedd(Rub1)ylation, Deacetylation, No Modification, Demethylation. | Low | - | BioGRID | 1054414 | |
| AR KAT2B | Reconstituted Complex Reconstituted Complex An interaction is inferred between proteins in vitro. This can include proteins in recombinant form or proteins isolated directly from cells with recombinant or purified bait. For example, GST pull-down assays where a GST-tagged protein is first isolated and then used to fish interactors from cell lysates are considered reconstituted complexes (e.g. PUBMED: 14657240, Fig. 4A or PUBMED: 14761940, Fig. 5). This can also include gel-shifts, surface plasmon resonance, isothermal titration calorimetry (ITC) and bio-layer interferometry (BLI) experiments. The bait-hit directionality may not be clear for 2 interacting proteins. In these cases the directionality is up to the discretion of the curator. | Low | - | BioGRID | 1054413 |
Curated By
- BioGRID