USP5
Gene Ontology Biological Process
Gene Ontology Molecular Function
PABPC1
Gene Ontology Biological Process
- RNA metabolic process [TAS]
- cellular protein metabolic process [TAS]
- gene expression [TAS]
- gene silencing by RNA [ISS]
- mRNA metabolic process [TAS]
- mRNA polyadenylation [TAS]
- mRNA splicing, via spliceosome [IC]
- mRNA stabilization [TAS]
- negative regulation of nuclear-transcribed mRNA catabolic process, nonsense-mediated decay [IDA]
- nuclear-transcribed mRNA catabolic process, deadenylation-dependent decay [TAS]
- nuclear-transcribed mRNA catabolic process, nonsense-mediated decay [TAS]
- nuclear-transcribed mRNA poly(A) tail shortening [TAS]
- positive regulation of nuclear-transcribed mRNA catabolic process, deadenylation-dependent decay [ISS]
- positive regulation of nuclear-transcribed mRNA poly(A) tail shortening [ISS]
- positive regulation of translation [TAS]
- translation [TAS]
- translational initiation [TAS]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Co-localization
Interaction inferred from two proteins that co-localize in the cell by indirect immunofluorescence only when in addition, if one gene is deleted, the other protein becomes mis-localized. Also includes co-dependent association of proteins with promoter DNA in chromatin immunoprecipitation experiments.
Publication
Deubiquitylases USP5 and USP13 are recruited to and regulate heat-induced stress granules through their deubiquitylating activities.
Stress granules are transient cytoplasmic foci induced by various stresses that contain translation-stalled mRNAs and RNA-binding proteins. They are proposed to modulate mRNA translation and stress responses. Here, we show that the deubiquitylases USP5 and USP13 are recruited to heat-induced stress granules. Heat-induced stress granules also contained K48- and K63-linked ubiquitin chains. Depletion of USP5 or USP13 resulted in elevated ... [more]
Throughput
- Low Throughput
Curated By
- BioGRID