HTZ1
Gene Ontology Biological Process
Gene Ontology Molecular Function- chromatin binding [IDA, IGI, ISS]
- chromatin binding [IDA, IGI, ISS]
Gene Ontology Cellular Component
UME6
Gene Ontology Biological Process
- chromatin remodeling [IMP]
- lipid particle organization [IMP]
- negative regulation of inositol biosynthetic process by negative regulation of transcription from RNA polymerase II promoter [IMP]
- negative regulation of transcription from RNA polymerase II promoter during meiosis [IMP]
- negative regulation of transcription from RNA polymerase II promoter during mitosis [IMP]
- nitrogen catabolite repression of transcription from RNA polymerase II promoter [IMP]
- positive regulation of meiosis by negative regulation of transcription from RNA polymerase II promoter [IMP]
- positive regulation of meiosis by positive regulation of transcription from RNA polymerase II promoter [IMP]
- positive regulation of phosphatidylcholine biosynthetic process by positive regulation of transcription from RNA polymerase II promoter [IMP]
- positive regulation of phosphatidylserine biosynthetic process by positive regulation of transcription from RNA polymerase II promoter [IMP]
- positive regulation of transcription from RNA polymerase II promoter during meiosis [IMP]
- pseudohyphal growth [IMP]
- spore germination [IMP]
Gene Ontology Molecular Function- RNA polymerase II core promoter proximal region sequence-specific DNA binding [IDA]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding transcription factor activity involved in negative regulation of transcription [IDA, IMP]
- repressing transcription factor binding [IDA, IPI]
- sequence-specific DNA binding [IDA]
- transcription factor binding transcription factor activity [IGI]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding [IDA]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding transcription factor activity involved in negative regulation of transcription [IDA, IMP]
- repressing transcription factor binding [IDA, IPI]
- sequence-specific DNA binding [IDA]
- transcription factor binding transcription factor activity [IGI]
Gene Ontology Cellular Component
Synthetic Lethality
A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.
Publication
Genome-wide, as opposed to local, antisilencing is mediated redundantly by the euchromatic factors Set1 and H2A.Z.
In Saccharomyces cerevisiae, several nonessential mechanisms including histone variant H2A.Z deposition and transcription-associated histone H3 methylation antagonize the local spread of Sir-dependent silent chromatin into adjacent euchromatic regions. However, it is unclear how and where these factors cooperate. To probe this question, we performed systematic genetic array screens for gene deletions that cause a synthetic growth defect in an htz1Delta ... [more]
Throughput
- Low Throughput
Ontology Terms
- phenotype: inviable (APO:0000112)
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
HTZ1 UME6 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -5.036 | BioGRID | 540940 | |
HTZ1 UME6 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -3.0144 | BioGRID | 222535 | |
HTZ1 UME6 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.198 | BioGRID | 2178378 | |
UME6 HTZ1 | Proximity Label-MS Proximity Label-MS An interaction is inferred when a bait-enzyme fusion protein selectively modifies a vicinal protein with a diffusible reactive product, followed by affinity capture of the modified protein and identification by mass spectrometric methods. | High | - | BioGRID | - | |
UME6 HTZ1 | Synthetic Lethality Synthetic Lethality A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition. | High | - | BioGRID | 3675472 |
Curated By
- BioGRID