BAIT

LTE1

MSI2, mitotic regulator LTE1, L000000955, YAL024C
Protein similar to GDP/GTP exchange factors; without detectable GEF activity; required for asymmetric localization of Bfa1p at daughter-directed spindle pole bodies and for mitotic exit at low temperatures
GO Process (3)
GO Function (1)
GO Component (1)

Gene Ontology Molecular Function

Gene Ontology Cellular Component

Saccharomyces cerevisiae (S288c)
PREY

NAP1

histone chaperone NAP1, L000001232, YKR048C
Histone chaperone; involved in histone exchange by removing and replacing histone H2A-H2B dimers or histone variant dimers from assembled nucleosomes; involved in the transport of H2A and H2B histones to the nucleus; required for the regulation of microtubule dynamics during mitosis; interacts with mitotic cyclin Clb2p; controls bud morphogenesis; phosphorylated by CK2; protein abundance increases in response to DNA replication stress
Saccharomyces cerevisiae (S288c)

Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Publication

Gene function prediction from congruent synthetic lethal interactions in yeast.

Ye P, Peyser BD, Pan X, Boeke JD, Spencer FA, Bader JS

We predicted gene function using synthetic lethal genetic interactions between null alleles in Saccharomyces cerevisiae. Phenotypic and protein interaction data indicate that synthetic lethal gene pairs function in parallel or compensating pathways. Congruent gene pairs, defined as sharing synthetic lethal partners, are in single pathway branches. We predicted benomyl sensitivity and nuclear migration defects using congruence; these phenotypes were uncorrelated ... [more]

Mol. Syst. Biol. May. 27, 2006; 1(0);2005.0026 [Pubmed: 16729061]

Throughput

  • High Throughput

Ontology Terms

  • phenotype: vegetative growth (APO:0000106)

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
NAP1 LTE1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.1485BioGRID
395262
LTE1 NAP1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.2159BioGRID
2075960

Curated By

  • BioGRID