SBH1
Gene Ontology Biological Process
Gene Ontology Molecular Function
Gene Ontology Cellular Component
SCS2
Gene Ontology Biological Process
- chromatin silencing at telomere [IGI, IMP]
- endoplasmic reticulum inheritance [IGI, IMP]
- endoplasmic reticulum membrane organization [IGI]
- endoplasmic reticulum polarization [IDA]
- negative regulation of transcription factor import into nucleus [IMP, IPI]
- phospholipid biosynthetic process [IGI, IMP]
- regulation of intracellular lipid transport [IMP]
- regulation of phosphatidylinositol dephosphorylation [IGI]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Two-hybrid
Bait protein expressed as a DNA binding domain (DBD) fusion and prey expressed as a transcriptional activation domain (TAD) fusion and interaction measured by reporter gene activation.
Publication
Membrane phospholipid alteration causes chronic ER stress through early degradation of homeostatic ER-resident proteins.
Phospholipid homeostasis in biological membranes is essential to maintain functions of organelles such as the endoplasmic reticulum. Phospholipid perturbation has been associated to cellular stress responses. However, in most cases, the implication of membrane lipid changes to homeostatic cellular response has not been clearly defined. Previously, we reported that Saccharomyces cerevisiae adapts to lipid bilayer stress by upregulating several protein ... [more]
Throughput
- Low Throughput
Additional Notes
- MYTH
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
SBH1 SCS2 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -6.2617 | BioGRID | 210966 | |
SCS2 SBH1 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | - | BioGRID | 211026 |
Curated By
- BioGRID