BAIT

SEC2

guanine nucleotide exchange factor SEC2, L000001828, YNL272C
Guanyl-nucleotide exchange factor for the small G-protein Sec4p; essential for post-Golgi vesicle transport and for autophagy; associates with the exocyst, via exocyst subunit Sec15p, on secretory vesicles
GO Process (2)
GO Function (2)
GO Component (5)
Saccharomyces cerevisiae (S288c)
PREY

SEC3

PSL1, L000001829, L000001520, YER008C
Subunit of the exocyst complex; the exocyst mediates polarized targeting and tethering of post-Golgi secretory vesicles to sites of exocytosis prior to SNARE-mediated fusion; PtdIns[4,5]P2-binding protein that localizes to exocytic sites in a Rho1p-dependent, actin-independent manner, targeting and anchoring the exocyst to the plasma membrane with Exo70p; direct GTP Rho1p effector; required for ER inheritance; relocalizes away from bud neck upon DNA replication stress
Saccharomyces cerevisiae (S288c)

Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Publication

Sec2 protein contains a coiled-coil domain essential for vesicular transport and a dispensable carboxy terminal domain.

Nair J, Mueller H, Peterson M, Novick P

SEC2 function is required at the post-Golgi apparatus stage of the yeast secretory pathway. The SEC2 sequence encodes a protein product of 759 amino acids containing an amino terminal region that is predicted to be in an alpha-helical, coiled-coil conformation. Two temperature-sensitive alleles, sec2-41 and sec2-59, encode proteins truncated by opal stop codons and are suppressible by an opal tRNA ... [more]

J. Cell Biol. Jun. 01, 1990; 110(6);1897-909 [Pubmed: 1693620]

Throughput

  • Low Throughput

Ontology Terms

  • phenotype: inviable (APO:0000112)

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
SEC2 SEC3
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Low-BioGRID
1534979
SEC2 SEC3
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

High-BioGRID
162634
SEC3 SEC2
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

High-BioGRID
162635

Curated By

  • BioGRID