BAIT

RPN11

MPR1, proteasome regulatory particle lid subunit RPN11, L000002976, L000002965, YFR004W
Metalloprotease subunit of 19S regulatory particle; part of 26S proteasome lid; couples the deubiquitination and degradation of proteasome substrates; involved, independent of catalytic activity, in fission of mitochondria and peroxisomes; protein abundance increases in response to DNA replication stress
Saccharomyces cerevisiae (S288c)
PREY

RRI1

CSN5, JAB1, S000007574, YDL216C
Catalytic subunit of the COP9 signalosome (CSN) complex; acts as an isopeptidase in cleaving the ubiquitin-like protein Nedd8 from SCF ubiquitin ligases; metalloendopeptidase involved in the adaptation to pheromone signaling
Saccharomyces cerevisiae (S288c)

Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Publication

The Proteasome Lid Triggers COP9 Signalosome Activity during the Transition of Sachharomyces cerevisiae Cells into Quiescence.

Bramasole L, Sinha A, Harshuk D, Cirigliano A, Gurevich S, Yu Z, Carmeli RL, Glickman MH, Rinaldi T, Pick E

The class of Cullin-RING E3 ligases (CRLs) selectively ubiquitinate a large portion of proteins targeted for proteolysis by the 26S proteasome. Before degradation, ubiquitin molecules are removed from their conjugated proteins by deubiquitinating enzymes, a handful of which are associated with the proteasome. The CRL activity is triggered by modification of the Cullin subunit with the ubiquitin-like protein, NEDD8 (also ... [more]

Biomolecules Sep. 04, 2019; 9(9); [Pubmed: 31487956]

Throughput

  • Low Throughput

Ontology Terms

  • vegetative growth (APO:0000106)

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
RPN11 RRI1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.1227BioGRID
377884

Curated By

  • BioGRID