BAIT
SLX5
HEX3, ULS2, SUMO-targeted ubiquitin ligase complex subunit SLX5, L000000768, YDL013W
Subunit of the Slx5-Slx8 SUMO-targeted ubiquitin ligase (STUbL) complex; stimulated by SUMO-modified substrates; contains a RING domain and two SIM motifs; forms SUMO-dependent nuclear foci, including DNA repair centers; associates with the centromere; null mutants are aneuploid, have a metaphase delay, and spindle defects including: mispositioned spindles, fish hook spindles, and aberrant spindle kinetics; required for maintenance of genome integrity like human ortholog RNF4
GO Process (4)
GO Function (2)
GO Component (3)
Gene Ontology Biological Process
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Saccharomyces cerevisiae (S288c)
PREY
UBA2
UAL1, E1 ubiquitin-activating protein UBA2, L000002404, YDR390C
Subunit of heterodimeric nuclear SUMO activating enzyme E1 with Aos1p; activates Smt3p (SUMO) before its conjugation to proteins (sumoylation), which may play a role in protein targeting; essential for viability;
GO Process (1)
GO Function (1)
GO Component (2)
Gene Ontology Biological Process
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Saccharomyces cerevisiae (S288c)
Synthetic Lethality
A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.
Publication
Genetic analysis connects SLX5 and SLX8 to the SUMO pathway in Saccharomyces cerevisiae.
MOT1 encodes an essential ATPase that functions as a general transcriptional regulator in vivo by modulating TATA-binding protein (TBP) DNA-binding activity. Although MOT1 was originally identified both biochemically and in several genetic screens as a transcriptional repressor, a combination of subsequent genetic, chromatin immunoprecipitation, and microarray analysis suggested that MOT1 might also have an additional role in vivo as a ... [more]
Genetics Mar. 01, 2006; 172(3);1499-509 [Pubmed: 16387868]
Throughput
- Low Throughput
Ontology Terms
- inviable (APO:0000112)
Curated By
- BioGRID