HRAS
Gene Ontology Biological Process
- Fc-epsilon receptor signaling pathway [TAS]
- MAPK cascade [TAS]
- Ras protein signal transduction [IDA, TAS]
- activation of MAPKK activity [TAS]
- axon guidance [TAS]
- blood coagulation [TAS]
- cell cycle arrest [IDA, IMP]
- cell surface receptor signaling pathway [TAS]
- cellular senescence [IDA]
- chemotaxis [TAS]
- epidermal growth factor receptor signaling pathway [TAS]
- fibroblast growth factor receptor signaling pathway [TAS]
- innate immune response [TAS]
- insulin receptor signaling pathway [TAS]
- leukocyte migration [TAS]
- mitotic cell cycle checkpoint [IDA]
- negative regulation of Rho GTPase activity [IDA]
- negative regulation of cell proliferation [IDA]
- negative regulation of gene expression [IDA]
- neurotrophin TRK receptor signaling pathway [TAS]
- organ morphogenesis [TAS]
- positive regulation of DNA replication [IDA]
- positive regulation of ERK1 and ERK2 cascade [IDA]
- positive regulation of JNK cascade [IDA]
- positive regulation of MAP kinase activity [IDA]
- positive regulation of MAPK cascade [IDA]
- positive regulation of Rac GTPase activity [IDA]
- positive regulation of actin cytoskeleton reorganization [IDA]
- positive regulation of cell migration [IDA]
- positive regulation of cell proliferation [IDA]
- positive regulation of epithelial cell proliferation [IMP]
- positive regulation of miRNA metabolic process [IDA]
- positive regulation of protein phosphorylation [IDA]
- positive regulation of ruffle assembly [IDA]
- positive regulation of transcription from RNA polymerase II promoter [IDA]
- positive regulation of wound healing [IDA]
- signal transduction [NAS]
- small GTPase mediated signal transduction [TAS]
- synaptic transmission [TAS]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
SRC
Gene Ontology Biological Process
- Fc-gamma receptor signaling pathway involved in phagocytosis [TAS]
- Ras protein signal transduction [TAS]
- T cell costimulation [TAS]
- axon guidance [TAS]
- blood coagulation [TAS]
- bone resorption [IBA, ISS]
- cell adhesion [IBA]
- cellular response to peptide hormone stimulus [IBA]
- cellular response to progesterone stimulus [ISS]
- central nervous system development [IBA]
- epidermal growth factor receptor signaling pathway [IBA, TAS]
- fibroblast growth factor receptor signaling pathway [TAS]
- innate immune response [IBA, TAS]
- integrin-mediated signaling pathway [IMP]
- intracellular estrogen receptor signaling pathway [IBA]
- intracellular signal transduction [IDA]
- leukocyte migration [TAS]
- membrane organization [TAS]
- negative regulation of anoikis [IMP]
- negative regulation of apoptotic process [IMP]
- negative regulation of cysteine-type endopeptidase activity involved in apoptotic process [IMP]
- negative regulation of extrinsic apoptotic signaling pathway [IMP]
- negative regulation of focal adhesion assembly [ISS]
- negative regulation of intrinsic apoptotic signaling pathway [IMP]
- negative regulation of mitochondrial depolarization [IMP]
- negative regulation of protein homooligomerization [IMP]
- neurotrophin TRK receptor signaling pathway [TAS]
- osteoclast development [IBA]
- peptidyl-tyrosine autophosphorylation [IBA]
- peptidyl-tyrosine phosphorylation [IDA]
- platelet activation [TAS]
- platelet-derived growth factor receptor signaling pathway [IBA]
- positive regulation of integrin activation [TAS]
- positive regulation of protein kinase B signaling [IMP]
- progesterone receptor signaling pathway [IBA, ISS]
- protein autophosphorylation [IDA]
- regulation of bone resorption [TAS]
- regulation of caveolin-mediated endocytosis [IMP]
- regulation of cell cycle [IBA]
- regulation of cell proliferation [IBA]
- regulation of cell-cell adhesion [IMP]
- regulation of early endosome to late endosome transport [IMP]
- regulation of epithelial cell migration [IMP]
- regulation of podosome assembly [IBA]
- regulation of vascular permeability [TAS]
- response to interleukin-1 [IMP]
- signal complex assembly [TAS]
- signal transduction [TAS]
- stress fiber assembly [IMP]
- transforming growth factor beta receptor signaling pathway [IMP]
Gene Ontology Molecular Function- SH2 domain binding [IPI]
- SH3/SH2 adaptor activity [TAS]
- enzyme binding [IPI]
- ephrin receptor binding [IPI]
- growth factor receptor binding [IPI]
- heme binding [IDA]
- hormone receptor binding [IBA]
- integrin binding [TAS]
- ion channel binding [IPI]
- kinase activity [TAS]
- non-membrane spanning protein tyrosine kinase activity [IBA, TAS]
- phosphoprotein binding [IPI]
- protein binding [IPI]
- protein kinase activity [IDA, TAS]
- protein tyrosine kinase activity [EXP, IDA, TAS]
- receptor binding [IPI]
- scaffold protein binding [IPI]
- SH2 domain binding [IPI]
- SH3/SH2 adaptor activity [TAS]
- enzyme binding [IPI]
- ephrin receptor binding [IPI]
- growth factor receptor binding [IPI]
- heme binding [IDA]
- hormone receptor binding [IBA]
- integrin binding [TAS]
- ion channel binding [IPI]
- kinase activity [TAS]
- non-membrane spanning protein tyrosine kinase activity [IBA, TAS]
- phosphoprotein binding [IPI]
- protein binding [IPI]
- protein kinase activity [IDA, TAS]
- protein tyrosine kinase activity [EXP, IDA, TAS]
- receptor binding [IPI]
- scaffold protein binding [IPI]
Gene Ontology Cellular Component
Proximity Label-MS
An interaction is inferred when a bait-enzyme fusion protein selectively modifies a vicinal protein with a diffusible reactive product, followed by affinity capture of the modified protein and identification by mass spectrometric methods.
Publication
Interrogating the protein interactomes of RAS isoforms identifies PIP5K1A as a KRAS-specific vulnerability.
In human cancers, oncogenic mutations commonly occur in the RAS genes KRAS, NRAS, or HRAS, but there are no clinical RAS inhibitors. Mutations are more prevalent in KRAS, possibly suggesting a unique oncogenic activity mediated by KRAS-specific interaction partners, which might be targeted. Here, we determine the specific protein interactomes of each RAS isoform by BirA proximity-dependent biotin identification. The ... [more]
Quantitative Score
- 2.11266463 [Confidence Score]
Throughput
- High Throughput
Additional Notes
- BioID system:Biotin-labled proteins with at least a 2-fold enrichment and p-value < 0.05 were considered significant.
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
HRAS SRC | Proximity Label-MS Proximity Label-MS An interaction is inferred when a bait-enzyme fusion protein selectively modifies a vicinal protein with a diffusible reactive product, followed by affinity capture of the modified protein and identification by mass spectrometric methods. | High | - | BioGRID | 2547881 |
Curated By
- BioGRID