BAIT

SNU114

GIN10, U5 snRNP GTPase SNU114, L000003541, YKL173W
GTPase component of U5 snRNP involved in mRNA splicing via spliceosome; binds directly to U5 snRNA; proposed to be involved in conformational changes of the spliceosome; similarity to ribosomal translocation factor EF-2
Saccharomyces cerevisiae (S288c)
PREY

MAD1

coiled-coil domain-containing protein MAD1, L000000974, YGL086W
Coiled-coil protein involved in spindle-assembly checkpoint; required for inhibition of karyopherin/importin Pse1p (aka Kap121p) upon spindle assembly checkpoint arrest; phosphorylated by Mps1p upon checkpoint activation which leads to inhibition of anaphase promoting complex activity; forms a complex with Mad2p; gene dosage imbalance between MAD1 and MAD2 leads to chromosome instability
Saccharomyces cerevisiae (S288c)

Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Publication

Selective defects in gene expression control genome instability in yeast splicing mutants.

Tam AS, Sihota TS, Milbury KL, Zhang A, Mathew V, Stirling PC

RNA processing mutants have been broadly implicated in genome stability, but mechanistic links are often unclear. Two predominant models have emerged: one involving changes in gene expression that perturb other genome maintenance factors and another in which genotoxic DNA:RNA hybrids, called R-loops, impair DNA replication. Here we characterize genome instability phenotypes in yeast splicing factor mutants and find that mitotic ... [more]

Mol. Biol. Cell Dec. 15, 2018; 30(2);191-200 [Pubmed: 30462576]

Throughput

  • Low Throughput

Ontology Terms

  • phenotype: vegetative growth (APO:0000106)
  • phenotype: resistance to chemicals (APO:0000087)

Additional Notes

  • double mutants show increased sensitivity to benomyl (CHEBI:3015)

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
MAD1 SNU114
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

High0.0006BioGRID
822478

Curated By

  • BioGRID