SWI4
Gene Ontology Biological Process
Gene Ontology Molecular Function
Gene Ontology Cellular Component
SIN3
Gene Ontology Biological Process
- double-strand break repair via nonhomologous end joining [IMP]
- histone deacetylation [IMP]
- negative regulation of chromatin silencing at rDNA [IMP]
- negative regulation of chromatin silencing at silent mating-type cassette [IMP]
- negative regulation of chromatin silencing at telomere [IMP]
- negative regulation of transcription during meiosis [IMP]
- negative regulation of transcription from RNA polymerase I promoter [IMP]
- negative regulation of transcription from RNA polymerase II promoter [IMP]
- positive regulation of transcription from RNA polymerase II promoter [IMP]
- positive regulation of transcription from RNA polymerase II promoter in response to heat stress [IMP]
- regulation of DNA-dependent DNA replication initiation [IMP]
- regulation of transcription involved in G2/M transition of mitotic cell cycle [IGI]
- transfer RNA gene-mediated silencing [IMP]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Synthetic Lethality
A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.
Publication
Epistasis analysis of suppressor mutations that allow HO expression in the absence of the yeast SW15 transcriptional activator.
We have examined mutations which overcome the requirement for SW15-dependent transcriptional activation of the Saccharomyces cerevisiae HO gene. We show that the RPD3 gene is the same as SDI2, and that SIN4 is the same as the TSF3 and SDI3 genes. We have also identified a new swi5 suppressor, RGR1. The RGR1 gene was identified originally as a negative regulator ... [more]
Throughput
- Low Throughput
Ontology Terms
- phenotype: inviable (APO:0000112)
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
SIN3 SWI4 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -7.2993 | BioGRID | 540945 | |
SIN3 SWI4 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -9.514 | BioGRID | 214413 | |
SWI4 SIN3 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.1256 | BioGRID | 2109580 | |
SIN3 SWI4 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -25.71 | BioGRID | 2358206 | |
SIN3 SWI4 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -5.9779 | BioGRID | 509793 |
Curated By
- BioGRID