SPN1
Gene Ontology Biological Process
Gene Ontology Molecular Function
RTF1
Gene Ontology Biological Process
- DNA-templated transcription, termination [IMP]
- global genome nucleotide-excision repair [IMP]
- mRNA 3'-end processing [IMP]
- negative regulation of transcription from RNA polymerase II promoter [IMP]
- positive regulation of phosphorylation of RNA polymerase II C-terminal domain serine 2 residues [IMP]
- positive regulation of transcription elongation from RNA polymerase I promoter [IDA]
- positive regulation of transcription elongation from RNA polymerase II promoter [IMP]
- recruitment of 3'-end processing factors to RNA polymerase II holoenzyme complex [IMP]
- regulation of chromatin silencing at telomere [IMP]
- regulation of histone H2B conserved C-terminal lysine ubiquitination [IDA, IMP]
- regulation of histone H2B ubiquitination [IMP]
- regulation of histone H3-K4 methylation [IMP]
- regulation of histone H3-K79 methylation [IMP]
- regulation of phosphorylation of RNA polymerase II C-terminal domain serine 2 residues [IMP]
- regulation of transcription from RNA polymerase II promoter [IGI]
- regulation of transcription-coupled nucleotide-excision repair [IGI]
- snoRNA 3'-end processing [IMP]
- snoRNA transcription from an RNA polymerase II promoter [IMP]
- transcription elongation from RNA polymerase II promoter [IGI, IMP]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Synthetic Growth Defect
A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.
Publication
Spn1 regulates the recruitment of Spt6 and the Swi/Snf complex during transcriptional activation by RNA polymerase II.
We investigated the timing of the recruitment of Spn1 and its partner, Spt6, to the CYC1 gene. Like TATA binding protein and RNA polymerase II (RNAPII), Spn1 is constitutively recruited to the CYC1 promoter, although levels of transcription from this gene, which is regulated postrecruitment of RNAPII, are low. In contrast, Spt6 appears only after growth in conditions in which ... [more]
Throughput
- Low Throughput
Ontology Terms
- phenotype: resistance to chemicals (APO:0000087)
- phenotype: vegetative growth (APO:0000106)
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
SPN1 RTF1 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.1869 | BioGRID | 2024509 | |
RTF1 SPN1 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.2926 | BioGRID | 2044307 | |
SPN1 RTF1 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.3325 | BioGRID | 2441490 | |
SPN1 RTF1 | Synthetic Growth Defect Synthetic Growth Defect A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell. | Low | - | BioGRID | 2451330 |
Curated By
- BioGRID