DNM1L
Gene Ontology Biological Process
- GTP catabolic process [IDA]
- apoptotic process [TAS]
- cellular component disassembly involved in execution phase of apoptosis [TAS]
- dynamin polymerization involved in mitochondrial fission [IDA]
- membrane fission involved in mitochondrial fission [IDA]
- membrane fusion [IDA]
- mitochondrial fission [IDA, IMP]
- mitochondrial fragmentation involved in apoptotic process [IMP]
- mitochondrion morphogenesis [IMP]
- necroptotic process [IMP]
- peroxisome fission [IDA, IMP]
- positive regulation of apoptotic process [IMP]
- positive regulation of intrinsic apoptotic signaling pathway [IMP]
- positive regulation of mitochondrial fission [TAS]
- positive regulation of protein secretion [IDA]
- positive regulation of release of cytochrome c from mitochondria [IMP]
- protein homotetramerization [IDA]
- regulation of mitochondrion organization [IMP]
- regulation of peroxisome organization [IMP]
- regulation of protein oligomerization [IDA]
- release of cytochrome c from mitochondria [IMP]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
PARK2
Gene Ontology Biological Process
- adult locomotory behavior [ISS]
- aggresome assembly [IMP]
- cellular protein catabolic process [IMP]
- cellular response to dopamine [TAS]
- cellular response to manganese ion [TAS]
- cellular response to toxic substance [IMP]
- cellular response to unfolded protein [TAS]
- central nervous system development [TAS]
- dopamine metabolic process [TAS]
- mitochondrial fission [ISS]
- mitochondrion degradation [IMP, ISS]
- mitochondrion organization [ISS]
- negative regulation of JNK cascade [ISS]
- negative regulation of actin filament bundle assembly [IDA]
- negative regulation of cell death [IDA]
- negative regulation of endoplasmic reticulum stress-induced intrinsic apoptotic signaling pathway [IDA, IMP]
- negative regulation of glucokinase activity [IDA]
- negative regulation of insulin secretion [IDA]
- negative regulation of mitochondrial fusion [ISS]
- negative regulation of neuron apoptotic process [IDA]
- negative regulation of neuron death [IGI]
- negative regulation of oxidative stress-induced cell death [NAS, TAS]
- negative regulation of oxidative stress-induced neuron intrinsic apoptotic signaling pathway [IDA]
- negative regulation of protein phosphorylation [IDA]
- negative regulation of reactive oxygen species metabolic process [IGI]
- negative regulation of release of cytochrome c from mitochondria [IDA]
- neuron cellular homeostasis [ISS]
- positive regulation of DNA binding [IDA]
- positive regulation of I-kappaB kinase/NF-kappaB signaling [IDA, IMP]
- positive regulation of mitochondrial fission [ISS]
- positive regulation of mitochondrial fusion [IMP]
- positive regulation of proteasomal protein catabolic process [IGI]
- positive regulation of protein linear polyubiquitination [IGI]
- positive regulation of transcription from RNA polymerase II promoter [IDA]
- positive regulation of tumor necrosis factor-mediated signaling pathway [IDA]
- proteasome-mediated ubiquitin-dependent protein catabolic process [IDA]
- protein K27-linked ubiquitination [TAS]
- protein K29-linked ubiquitination [TAS]
- protein K48-linked ubiquitination [IDA]
- protein K6-linked ubiquitination [TAS]
- protein K63-linked ubiquitination [IDA, TAS]
- protein autoubiquitination [IDA]
- protein monoubiquitination [IDA]
- protein polyubiquitination [IDA]
- protein ubiquitination [IDA, IMP]
- protein ubiquitination involved in ubiquitin-dependent protein catabolic process [IC, IDA, NAS, TAS]
- regulation of autophagy [IDA]
- regulation of cellular response to oxidative stress [ISS]
- regulation of dopamine secretion [TAS]
- regulation of glucose metabolic process [TAS]
- regulation of lipid transport [TAS]
- regulation of mitochondrion degradation [TAS]
- regulation of mitochondrion organization [IDA]
- regulation of reactive oxygen species metabolic process [IMP]
- regulation of synaptic vesicle transport [NAS]
- response to endoplasmic reticulum stress [IMP]
- response to oxidative stress [ISS]
- zinc ion homeostasis [ISS]
Gene Ontology Molecular Function- F-box domain binding [IPI]
- G-protein coupled receptor binding [IPI]
- Hsp70 protein binding [IPI]
- PDZ domain binding [IPI]
- SH3 domain binding [TAS]
- actin binding [IPI]
- chaperone binding [IPI]
- cullin family protein binding [IDA]
- heat shock protein binding [IPI]
- histone deacetylase binding [IPI]
- identical protein binding [IPI]
- kinase binding [IPI]
- protein binding [IPI]
- protein kinase binding [IPI]
- tubulin binding [IPI]
- ubiquitin binding [IDA]
- ubiquitin conjugating enzyme binding [IPI]
- ubiquitin protein ligase activity [IDA, NAS]
- ubiquitin protein ligase binding [IPI]
- ubiquitin-protein transferase activity [IDA]
- ubiquitin-specific protease binding [IPI]
- zinc ion binding [TAS]
- F-box domain binding [IPI]
- G-protein coupled receptor binding [IPI]
- Hsp70 protein binding [IPI]
- PDZ domain binding [IPI]
- SH3 domain binding [TAS]
- actin binding [IPI]
- chaperone binding [IPI]
- cullin family protein binding [IDA]
- heat shock protein binding [IPI]
- histone deacetylase binding [IPI]
- identical protein binding [IPI]
- kinase binding [IPI]
- protein binding [IPI]
- protein kinase binding [IPI]
- tubulin binding [IPI]
- ubiquitin binding [IDA]
- ubiquitin conjugating enzyme binding [IPI]
- ubiquitin protein ligase activity [IDA, NAS]
- ubiquitin protein ligase binding [IPI]
- ubiquitin-protein transferase activity [IDA]
- ubiquitin-specific protease binding [IPI]
- zinc ion binding [TAS]
Gene Ontology Cellular Component
FRET
An interaction is inferred when close proximity of interaction partners is detected by fluorescence resonance energy transfer between pairs of fluorophore-labeled molecules, such as occurs between CFP (donor) and YFP (acceptor) fusion proteins.
Publication
LRRK2 impairs PINK1/Parkin-dependent mitophagy via its kinase activity: pathologic insights into Parkinson's disease.
Mutations of LRRK2, encoding leucine-rich repeat kinase 2 (LRRK2), are the leading cause of autosomal dominant Parkinson's disease (PD). The most frequent of these mutations, G2019S substitution, increases kinase activity, but it remains unclear how it causes PD. Recent studies suggest that LRRK2 modulates mitochondrial homeostasis. Mitochondrial dysfunction plays a key role in the pathogenesis of autosomal recessive PD forms ... [more]
Throughput
- Low Throughput
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
PARK2 DNM1L | Affinity Capture-MS Affinity Capture-MS An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods. | Low | - | BioGRID | - | |
PARK2 DNM1L | Affinity Capture-MS Affinity Capture-MS An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods. | High | - | BioGRID | 3463643 | |
PARK2 DNM1L | Affinity Capture-Western Affinity Capture-Western An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins. | Low | - | BioGRID | - | |
DNM1L PARK2 | Affinity Capture-Western Affinity Capture-Western An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins. | Low | - | BioGRID | - | |
PARK2 DNM1L | Biochemical Activity Biochemical Activity An interaction is inferred from the biochemical effect of one protein upon another, for example, GTP-GDP exchange activity or phosphorylation of a substrate by a kinase. The bait protein executes the activity on the substrate hit protein. A Modification value is recorded for interactions of this type with the possible values Phosphorylation, Ubiquitination, Sumoylation, Dephosphorylation, Methylation, Prenylation, Acetylation, Deubiquitination, Proteolytic Processing, Glucosylation, Nedd(Rub1)ylation, Deacetylation, No Modification, Demethylation. | Low | - | BioGRID | 571365 | |
PARK2 DNM1L | Reconstituted Complex Reconstituted Complex An interaction is detected between purified proteins in vitro. | Low | - | BioGRID | - |
Curated By
- BioGRID