BAIT

HMT1

HCP1, ODP1, RMT1, protein-arginine omega-N methyltransferase HMT1, L000002808, L000001296, YBR034C
Nuclear SAM-dependent mono- and asymmetric methyltransferase; modifies hnRNPs, including Npl3p and Hrp1p, affecting their activity and nuclear export; methylates U1 snRNP protein Snp1p and ribosomal protein Rps2p; interacts genetically with genes encoding components of Rpd3(L) and this interaction is important for Rpd3 recruitment to the subtelomeric region.
Saccharomyces cerevisiae (S288c)
PREY

STO1

CBC1, CBP80, GCR3, SUT1, L000002131, YMR125W
Large subunit of the nuclear mRNA cap-binding protein complex; interacts with Npl3p to carry nuclear poly(A)+ mRNA to cytoplasm; also involved in nuclear mRNA degradation and telomere maintenance; orthologous to mammalian CBP80
GO Process (3)
GO Function (1)
GO Component (4)
Saccharomyces cerevisiae (S288c)

Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Publication

Snu56p is required for Mer1p-activated meiotic splicing.

Balzer RJ, Henry MF

Alternative or regulated splicing can be applied to genes that are transcribed but whose products may be deleterious or unnecessary to the cell. In the yeast Saccharomyces cerevisiae, positive splicing regulation occurs during meiosis in which diploid cells divide to form haploid gametes. The Mer1 protein recruits the U1 snRNP to specific pre-mRNAs, permitting spliceosomal assembly and splicing. The mature ... [more]

Mol. Cell. Biol. Apr. 01, 2008; 28(8);2497-508 [Pubmed: 18268012]

Throughput

  • Low Throughput

Ontology Terms

  • phenotype: inviable (APO:0000112)

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
HMT1 STO1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-6.7471BioGRID
310344
HMT1 STO1
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Low-BioGRID
162085
STO1 HMT1
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Low-BioGRID
161845

Curated By

  • BioGRID