EAF5
Gene Ontology Biological Process
ACT1
Gene Ontology Biological Process
- DNA repair [IDA]
- actomyosin contractile ring contraction [IDA, IMP]
- ascospore wall assembly [IDA]
- budding cell isotropic bud growth [TAS]
- cellular response to oxidative stress [IGI]
- chronological cell aging [IMP]
- endocytosis [IMP]
- establishment of cell polarity [IGI]
- establishment of mitotic spindle orientation [TAS]
- exocytosis [TAS]
- fungal-type cell wall organization [TAS]
- histone acetylation [IDA]
- mitochondrion inheritance [TAS]
- protein secretion [IGI, IMP]
- vacuole inheritance [IGI, IMP]
- vesicle transport along actin filament [TAS]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Affinity Capture-Western
An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins.
Publication
Eaf1 is the platform for NuA4 molecular assembly that evolutionarily links chromatin acetylation to ATP-dependent exchange of histone H2A variants.
Eaf1 (for Esa1-associated factor 1) and Eaf2 have been identified as stable subunits of NuA4, a yeast histone H4/H2A acetyltransferase complex implicated in gene regulation and DNA repair. While both SWI3-ADA2-N-CoR-TF IIIB domain-containing proteins are required for normal cell cycle progression, their depletion does not affect the global Esa1-dependent acetylation of histones. In contrast to all other subunits, Eaf1 is ... [more]
Throughput
- Low Throughput
Additional Notes
- TAP-tag purification of Eaf5p pulls down the NuA4 complex, whose subunits are identified by silver staining.
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
ACT1 EAF5 | Affinity Capture-MS Affinity Capture-MS An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods. | Low | - | BioGRID | - | |
EAF5 ACT1 | Affinity Capture-MS Affinity Capture-MS An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods. | Low | - | BioGRID | - | |
EAF5 ACT1 | Dosage Lethality Dosage Lethality A genetic interaction is inferred when over expression or increased dosage of one gene causes lethality in a strain that is mutated or deleted for another gene. | High | - | BioGRID | 567538 | |
EAF5 ACT1 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.3404 | BioGRID | 1895169 | |
EAF5 ACT1 | Positive Genetic Positive Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a less severe fitness defect than expected under a given condition. This term is reserved for high or low throughput studies with scores. | High | 0.187 | BioGRID | 1895168 | |
ACT1 EAF5 | Synthetic Haploinsufficiency Synthetic Haploinsufficiency A genetic interaction is inferred when mutations or deletions in separate genes, at least one of which is hemizygous, cause a minimal phenotype alone but result in lethality when combined in the same cell under a given condition. | High | - | BioGRID | 281578 |
Curated By
- BioGRID