HSPA5
Gene Ontology Biological Process
- ATP catabolic process [ISS]
- ER-associated ubiquitin-dependent protein catabolic process [TAS]
- activation of signaling protein activity involved in unfolded protein response [TAS]
- blood coagulation [TAS]
- cellular protein metabolic process [TAS]
- cellular response to glucose starvation [IDA]
- endoplasmic reticulum unfolded protein response [TAS]
- maintenance of protein localization in endoplasmic reticulum [IMP]
- negative regulation of apoptotic process [IMP, TAS]
- platelet activation [TAS]
- platelet degranulation [TAS]
- positive regulation of cell migration [IMP]
- regulation of protein folding in endoplasmic reticulum [TAS]
- substantia nigra development [IEP]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
- COP9 signalosome [IDA]
- endoplasmic reticulum [IDA, IMP, TAS]
- endoplasmic reticulum chaperone complex [IDA]
- endoplasmic reticulum lumen [TAS]
- endoplasmic reticulum membrane [TAS]
- endoplasmic reticulum-Golgi intermediate compartment [IDA]
- extracellular vesicular exosome [IDA]
- focal adhesion [IDA]
- integral component of endoplasmic reticulum membrane [IDA]
- membrane [IDA]
- midbody [IDA]
- nucleus [IDA, IMP]
WASF3
Gene Ontology Biological Process
Gene Ontology Cellular Component
Affinity Capture-Western
An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins.
Publication
AR-12 Inhibits Multiple Chaperones Concomitant With Stimulating Autophagosome Formation Collectively Preventing Virus Replication.
We have recently demonstrated that AR-12 (OSU-03012) reduces the function and ATPase activities of multiple HSP90 and HSP70 family chaperones. Combined knock down of chaperones or AR-12 treatment acted to reduce the expression of virus receptors and essential glucosidase proteins. Combined knock down of chaperones or AR-12 treatment inactivated mTOR and elevated ATG13 S318 phosphorylation concomitant with inducing an endoplasmic ... [more]
Throughput
- Low Throughput
Curated By
- BioGRID